Skip to main content
Log in

Global gene expression of a ΔPsbO:ΔPsbU mutant and a spontaneous revertant in the cyanobacterium Synechocystis sp. strain PCC 6803

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The photosystem II (PSII) double mutant ΔPsbO:ΔPsbU was unable to grow photoautotrophically at pH 7.5, but growth was restored at pH 10. We have isolated a pseudorevertant of this strain, which exhibited photoautotrophic growth at pH 7.5. PSII-specific oxygen evolution and assembled PSII centers in the pseudorevertant and the original ΔPsbO:ΔPsbU strains were similar at pH 7.5. Comparison of global gene expression of the two strains at pH 7.5 revealed that <4% of genes differed. In the pseudorevertant, up-regulated transcripts included stress-responsive genes, many of which were shown previously to be under the control of Hik34. Elevated transcripts included those encoding heat shock proteins (HspA, DnaK2 and HtpG), two Deg proteases (DegP and DegQ), and the orange carotenoid protein (OCP, Slr1963). Up-regulated genes encoded proteins localized to different cell compartments, including the thylakoid, plasma and outer membranes. We suggest that the cell wide up-regulation of stress response genes in the pseudorevertant may limit the impact of PSII instability that is observed in the ΔPsbO:ΔPsbU strain. Futhermore, the OCP has a photoprotective role mediating phycobilisome-associated nonphotochemical quenching, such that increased OCP levels in the pseudorevertant may reduce photons reaching these impaired centers. These two responses, in combination with uncharacterized stress responses, are sufficient to permit the growth of pseudorevertant at pH 7.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

OEC:

Oxygen-evolving complex

PSII:

Photosystem II

Hik:

Histidine kinase

ROS:

Reactive oxygen species

References

  • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17:509–519

    Article  PubMed  CAS  Google Scholar 

  • Balint I, Bhattacharya J, Perelman A, Schatz D, Moskovitz Y, Keren N, Schwarz R (2006) Inactivation of the extrinsic subunit of photosystem II, PsbU, in Synechococcus PCC 7942 results in elevated resistance to oxidative stress. FEBS Lett 580:2117–2122

    Article  PubMed  CAS  Google Scholar 

  • Barker M, de Vries R, Nield J, Komenda J, Nixon PJ (2006) The Deg proteases protect Synechocystis sp. PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle. J Biol Chem 281:30347–30355

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Bianco NR, Bryant D, Grossman A (2000) Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Mol Microbiol 37:941–951

    Article  PubMed  CAS  Google Scholar 

  • Bockholt R, Masepohl B, Pistorius EK (1991) Insertional inactivation of the psbO gene encoding the manganese stabilizing protein of photosystem II in the cyanobacterium Synechococcus PCC7942. Effect on photosynthetic water oxidation and L-amino acid oxidase activity. FEBS Lett 294:59–63

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Sherman LA (1991) Deletion mutagenesis in Synechocystis sp. PCC6803 indicates that the Mn-stabilizing protein of photosystem II is not essential for O2 evolution. Biochemistry 30:440–446

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Qian M, Pierce C (1996) The manganese stabilizing protein of photosystem II modifies the in vivo deactivation and photoactivation kinetics of the H2O oxidation complex in Synechocystis sp. PCC6803. Biochemistry 35:874–882

    Article  PubMed  CAS  Google Scholar 

  • Clarke SM, Eaton-Rye JJ (1999) Mutation of Phe-363 in the photosystem II protein CP47 impairs photoautotrophic growth, alters the chloride requirement, and prevents photosynthesis in the absence of either PSII-O or PSII-V in Synechocystis sp. PCC 6803. Biochemistry 38:2707–2715

    Article  PubMed  CAS  Google Scholar 

  • Colon-Lopez MS, Sherman DM, Sherman LA (1997) Transcriptional and translational regulation of nitrogenase in light-dark- and continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 179:4319–4327

    PubMed  CAS  Google Scholar 

  • Duguay AR, Silhavy TJ (2004) Quality control in the bacterial periplasm. Biochim Biophys Acta 1694:121–134

    Article  PubMed  CAS  Google Scholar 

  • Eaton-Rye JJ, Shand JA, Nicoll WS (2003) pH-dependent photoautotrophic growth of specific photosystem II mutants lacking lumenal extrinsic polypeptides in Synechocystis PCC 6803. FEBS Lett 543:148–153

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Huang F, Nilsson F, Hagemann M, Norling B (2000) Proteomics of Synechocystis sp. strain PCC 6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem 267:5900–5907

    Article  PubMed  CAS  Google Scholar 

  • He Q, Vermaas W (1999) Genetic deletion of proteins resembling Type IV pilins in Synechocystis sp. PCC 6803: their role in binding or transfer of newly synthesized chlorophyll. Plant Mol Biol 39:1175–1188

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Hedman E, Funk C, Kieselbach T, Scroder WP, Norling B (2004) Isolation of outer membrane of Synechocystis sp. PCC 6803 and its proteomic characterization. Mol Cell Prot 3:586–595

    Article  CAS  Google Scholar 

  • Huang F, Fulda S, Hagemann M, Norling B (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 6:910–920

    Article  PubMed  CAS  Google Scholar 

  • Inoue-Kashino N, Kashino Y, Satoh K, Terashima I, Pakrasi HB (2005) PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochemistry 44:12214–12228

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Schroder WP, Funk C (2005) Functional analysis of the PsbP-like protein (sll1418) in Synechocystis sp. PCC 6803. Photosynth Res 84:257–262

    Article  PubMed  CAS  Google Scholar 

  • Jansen T, Kidron H, Soitamo A, Salminen T, Maenpaa P (2003) Transcriptional regulation and structural modelling of the Synechocystis sp. PCC 6803 carboxyl-terminal endoprotease family. FEMS Microbiol Lett 228:121–128

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  Google Scholar 

  • Kaneko T, Nakamura Y, Sasamoto S, Watanabe A, Kohara M, Matsumotot M, Shimpo S, Yamada M, Tabata S (2003) Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res 10:221–228

    Article  PubMed  CAS  Google Scholar 

  • Kanesaki Y, Yamamoto H, Paithoonrangsarid K, Shoumskaya M, Suzuki I, Hayashi H, Murata N. (2007) Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium, Synechocystis sp. PCC 6803. Plant J 49:313–324

    Article  PubMed  CAS  Google Scholar 

  • Kashino Y Lauber WM, Carroll JA, Wang QJ, Whitmarsh J, Satoh K, Pakrasi HB (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41:8004–8012

    Article  CAS  Google Scholar 

  • Kimura A, Eaton-Rye JJ, Morita EH, Nishiyama Y, Hayashi H (2002) Protection of the oxygen-evolving machinery by the extrinsic proteins of Photosystem II is essential for development of cellular thermotolerance in Synechocystis sp. PCC 6803. Plant Cell Physiol 43:932–938

    Article  PubMed  CAS  Google Scholar 

  • Li H, Singh AK, McIntyre LM, Sherman LA (2004) Differential gene expression in response to hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803. J Bacteriol 186:3331–3345

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Andrews H, Eaton-Rye JJ, Burnap RL (2004) In situ effects of mutations of the extrinsic cytochrome c 550 of photosystem II in Synechocystis sp. PCC6803. Biochemistry 43:14161–14170

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Long AD, Mangalam HJ, Chan BY, Tolleri L, Hatfield GW, Baldi P (2001) Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J Biol Chem 276:19937–19944

    Article  PubMed  CAS  Google Scholar 

  • Mayes SR, Cook KM, Self SJ, Zhang Z, Barber J (1991) Deletion of the gene encoding the Photosystem II 33 kDa protein from Synechocystis sp. PCC 6803 does not inactivate water-splitting but increases vulnerability to photoinhibition. Biochim Biophys Acta 1060:1–12

    Article  CAS  Google Scholar 

  • Meunier PC, Colon-Lopez MS, Sherman LA (1997) Temporal changes in state transitions and photosystem organization in the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Plant Physiol 115:991–1000

    PubMed  CAS  Google Scholar 

  • Morgan TR, Shand JA, Clarke SM, Eaton-Rye JJ (1998) Specific requirements for cytochrome c-550 and the manganese-stabilizing protein in photoautotrophic strains of Synechocystis sp. PCC 6803 with mutations in the domain Gly-351 to Thr-436 of the chlorophyll-binding protein CP47. Biochemistry 37:14437–14449

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Suzuki I (2006) Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot 57:235–247

    Article  PubMed  Google Scholar 

  • Nakai M, Sugita D, Omata T, Endo T (1993) Sec-Y protein is localized in both the cytoplasmic and thylakoid membranes in the cyanobacterium Synechococcus PCC7942. Biochem Biophys Res Commun 193:228–234

    Article  PubMed  CAS  Google Scholar 

  • Nakai M, Nohara T, Sugita D, Endo T (1994) Identification and characterization of the sec-A protein homologue in the cyanobacterium Synechococcus PCC7942. Biochem Biophys Res Commun 200:844–851

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Los DA, Murata N (1999) PsbU, a protein associated with Photosystem II, is required for the acquisition of cellular thermotolerance in Synechococcus species PCC 7002. Plant Physiol 120:301–308

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    Article  PubMed  CAS  Google Scholar 

  • Paithoonrangsarid K Shoumskaya MA, Kanesaki Y, Satoh S, Tabata S, Los DA, Zinchenko VV, Hayashi H, Tanticharoen M, Suzuki I, Murata N (2004) Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. J Biol Chem 279:53078–53086

    Article  CAS  Google Scholar 

  • Philbrick JB, Diner BA, Zilinskas BA (1991) Construction and characterization of cyanobacterial mutants lacking the manganese-stabilizing polypeptide of photosystem II. J Biol Chem 266:13370–13376

    PubMed  CAS  Google Scholar 

  • Postier BL Wang HL, Singh A, Impson L, Andrews HL, Klahn J, Li H, Risinger G, Pesta D, Deyholos M, Galbraith DW, Sherman LA, Burnap RL (2003) The construction and use of bacterial DNA microarrays based on an optimized two-stage PCR strategy. BMC Genomics 4:23

    Article  Google Scholar 

  • Raivio TL, Silhavy TJ (2001) Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 55:591–624

    Article  PubMed  CAS  Google Scholar 

  • Reddy KJ, Webb R, Sherman LA (1990) Bacterial RNA isolation with one hour centrifugation in a table-top ultracentrifuge. Biotechniques 8:250–251

    PubMed  CAS  Google Scholar 

  • Roose JL, Kashino Y, Pakrasi HB (2007) The PsbQ protein defines cyanobacterial Photosystem II complexes with highest activity and stability. Proc Natl Acad Sci USA 104:2548–2553

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Inoue Y (1993) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry 32:1825–1832

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Burnap RL, Inoue Y (1995) An independent role of cytochrome c-550 in cyanobacterial photosystem II as revealed by double-deletion mutagenesis of the psbO and psbV genes in Synechocystis sp. PCC 6803. Biochemistry 34:12661–12668

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Ikeuchi M, Inoue Y (1997) Analysis of the psbU gene encoding the 12-kDa extrinsic protein of photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC 6803. J Biol Chem 272:17821–17826

    Article  PubMed  CAS  Google Scholar 

  • Shen JR, Qian M, Inoue Y, Burnap RL (1998) Functional characterization of Synechocystis sp. PCC 6803 DpsbU and DpsbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolution. Biochemistry 37:1551–1558

    Article  PubMed  CAS  Google Scholar 

  • Shoumskaya MA, Paithoonrangsarid K, Kanesaki Y, Los DA, Zinchenko VV, Tanticharoen M, Suzuki I, Murata N (2005) Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J Biol Chem 280:21531–21538

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Sherman LA (2002) Characterization of a stress-responsive operon in the cyanobacterium Synechocystis sp. strain PCC 6803. Gene 297:11–19

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Sherman LA (2007) Reflections on the function of IsiA, a cyanobacterial stress-inducible, Chl-binding protein. Photosynth Res. doi: 10.10007/s11120-007-9151-7

  • Singh AK, McIntyre LM, Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132:1825–1839

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Summerfield TC, Li H, Sherman LA (2006) The heat shock response in the cyanobacterium Synechocystis sp. Strain PCC 6803 and regulation of gene expression by HrcA and SigB. Arch Microbiol 186:273–286

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Pisareva T, Norling B (2005) Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics 5:4905–4916

    Article  PubMed  CAS  Google Scholar 

  • Summerfield TC, Shand JA, Bentley FK, Eaton-Rye JJ (2005a) PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for photosystem II activity in specific mutants and in nutrient-limiting conditions. Biochemistry 44:805–815

    Article  PubMed  CAS  Google Scholar 

  • Summerfield TC, Winter RT, Eaton-Rye JJ (2005b) Investigation of a requirement for the PsbP-like protein in Synechocystis sp. PCC 6803. Photosynth Res 84:263–268

    Article  PubMed  CAS  Google Scholar 

  • Suzuki I, Kanesaki Y, Hayashi H, Hall JJ, Simon WJ, Slabas AR, Murata N (2005) The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis. Plant Physiol 138:1409–1421

    Article  PubMed  CAS  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of Photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175

    Article  PubMed  CAS  Google Scholar 

  • Veerman J, Bentley FK, Eaton-Rye JJ, Mullineaux CW, Vasil’ev S, Bruce D (2005) The PsbU subunit of photosystem II stabilizes energy transfer and primary photochemistry in the phycobilisome-photosystem II assembly of Synechocystis sp. PCC 6803. Biochemistry 44:16939–16948

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK (1988) Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. In: Parker L, Glazer AN (eds). Methods in enzymology. Academic Press, San Diego, pp 766–778

    Google Scholar 

  • Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    Article  PubMed  CAS  Google Scholar 

  • Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98:13443–13448

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Department of Energy (DE-F002-99ER20342) to Louis A Sherman and in part by a New Zealand Marsden grant (UOO309) to Julian Eaton-Rye. This article honors the various contributions of Govindjee to photosynthesis and fluorescence from cyanobacteria beginning in the mid 1960s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis A. Sherman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11120_2007_9237_MOESM1_ESM.xls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summerfield, T.C., Eaton-Rye, J.J. & Sherman, L.A. Global gene expression of a ΔPsbO:ΔPsbU mutant and a spontaneous revertant in the cyanobacterium Synechocystis sp. strain PCC 6803. Photosynth Res 94, 265–274 (2007). https://doi.org/10.1007/s11120-007-9237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9237-2

Keywords

Navigation