Skip to main content
Log in

Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores

  • ORIGINAL PAPER
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Seasonal reproduction in some Arctic Laminariales coincides with increased UV-B radiation due to stratospheric ozone depletion and relatively high water temperatures during polar spring. To find out the capacity to cope with different spectral irradiance, the kinetics of photosynthetic recovery was investigated in zoospores of four Arctic species of the order Laminariales, the kelps Saccorhiza dermatodea, Alaria esculenta, Laminaria digitata, and Laminaria saccharina. The physiology of light harvesting, changes in photosynthetic efficiency and kinetics of photosynthetic recovery were measured by in vivo fluorescence changes of Photosystem II (PSII). Saturation irradiance of freshly released spores showed minimal I k values (photon fluence rate where initial slope intersects horizontal asymptote of the curve) values ranging from 13 to 18 µmol photons m−2 s−1 among species collected at different depths, confirming that spores are low-light adapted. Exposure to different radiation spectra consisting of photosynthetically active radiation (PAR; 400–700 nm), PAR+UV-A radiation (UV-A; 320–400 nm), and PAR+ UV-A+UV-B radiation (UV-B; 280–320 nm) showed that the cumulative effects of increasing PAR fluence and the additional effect of UV-A and UV-B radiations on photoinhibition of photosynthesis are species specific. After long exposures, Laminaria saccharina was more sensitive to the different light treatments than the other three species investigated. Kinetics of recovery in zoospores showed a fast phase in S. dermatodea, which indicates a reduction of the photoprotective process while a slow phase in L. saccharina indicates recovery from severe photodamage. This first attempt to study photoinhibition and kinetics of recovery in zoospores showed that zoospores are the stage in the life history of seaweeds most susceptible to light stress and that ultraviolet radiation (UVR) effectively delays photosynthetic recovery. The viability of spores is important on the recruitment of the gametophytic and sporophytic life stages. The impact of UVR on the zoospores is related to the vertical depth distribution of the large sporophytes in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PAR:

photosynthetically active radiation (=P)

UV-A:

ultraviolet-A

UV-B:

ultraviolet-B

PAR+UV-A:

(=PA)

PAR+UV-A+UV-B:

(=PAB)

I k :

saturating irradiance

α:

photosynthetic efficiency

rETRmax :

maximum relative electron transport rate

PSII:

Photosystem II

Fv/Fm :

maximum potential quantum yield of PSII

P–I curve:

photosynthesis-irradiance curve

tan h:

hyperbolic tangent

PFR:

photon flux rate

CPDs:

cyclobutane-pyrimidine dimers

References

  • Adams III WW, Demming-Adams B (1992) Operation of xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 186:390–398

    Article  CAS  Google Scholar 

  • Amsler CD, Neushul M (1989) Diel periodicity of spore release from kelp Nereocystis luetkeana (Mertens) Postels et Ruprecht. J Exp Mar Biol Ecol 134:117–127

    Article  Google Scholar 

  • Amsler CD, Neushul M (1991) Photosynthetic physiology and chemical composition of spores of the kelps Macrocystis pyrifera, Nereocystis luetkeana, Laminaria farlowii, and Pterygophora californica (Phaeophyceae). J Phycol 27:26–34

    Article  CAS  Google Scholar 

  • Andersson B, Salter AH, Virgin I, Vass I, Styring S (1992) Photodamage to Photosystem II- primary and secondary events. J Photochem Photobiol B: Biol 15: 15–31

    Article  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Baroli I, Melis A (1998) Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystem II light-harvesting chlorophyll antenna size. Planta 295:288–296

    Article  Google Scholar 

  • Bergo E, Segalla A, Giacometti GM, Tarantino D, Soave C, Andreucci F, Barbato R (2003) Role of visible light in the recovery of photosystem II structure and function from ultraviolet-B stress in higher plants. J Exp Bot 54:1665–1673

    Article  PubMed  CAS  Google Scholar 

  • Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bischof K, Kräbs G, Wiencke C, Hanelt D (2002) Solar ultraviolet radiation affects the activity of ribulose-1,5-biphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactuca L. Planta 215:502–509

    Article  PubMed  CAS  Google Scholar 

  • Chalker BE, Dunlap WC, Oliver JK (1983) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. II. Light saturation curves for photosynthesis and respiration. J Exp Mar Biol Ecol 73:37–56

    Article  Google Scholar 

  • Chapman ARO (1984) Reproduction, recruitment and mortality in two species of Laminaria in southwest Nova Scotia. J Exp Mar Biol Ecol 78:99–109

    Article  Google Scholar 

  • Coon DA, Neushul M, Charters AC (1972) The settling behaviour of marine algal spores. In: Nisizawa K (ed) Proceedings 7th International Seaweed Symposium, University of Tokyo Press, Tokyo, pp 237–242

  • Cordi B, Donkin ME, Peloquin J, Price DN, Depledge MH (2001) The influence of UV-B radiation on the reproductive cells of the intertidal macroalga, Enteromorpha intestinalis. Aquat Toxicol 56:1–11

    Article  PubMed  CAS  Google Scholar 

  • Deysher L , Norton TA (1982) Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 56:179–195

    Article  Google Scholar 

  • Dring MJ, Makarov V, Schoschina E, Lorenz M, Lüning K (1996) Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (Phaeophyta). Mar Biol 126:183–191

    Article  CAS  Google Scholar 

  • Franklin LA, Larkum AWD (1997) Multiple strategies for a high light existence in a tropical marine macroalga. Photosyn Res 53:149–159

    Article  CAS  Google Scholar 

  • Franklin LA, Osmond CB, Larkum AWD (2003) Photoinhibition, UV-B and algal photosynthesis. In: Larkum AW, Douglas SE, Raven JA (eds) Photosynthesis in Algae. Kluwer Academic Publishers, The Netherlands, pp 351–384

    Google Scholar 

  • Gathen P von der, Rex M, Harris NRP, Lucic D, Knudsen BM, Braathen GO, De Backer H, Fabian R, Fast H, Gil M, Kyrö E, Mikkelsen IS, Rummukainen M, Stähelin J, Varotsos C (1995) Observational evidence for chemical ozone depletion over the Arctic in winter 1991–92. Nature 375:131–134

    Article  Google Scholar 

  • Gordon R, Brawley SH (2004) Effects of water motion on propagule release from algae with complex life histories. Mar Biol 145:21–29

    Article  Google Scholar 

  • Grzymski J, Johnsen G, Sakshaug E (1997) The significance of intracellular self-shading on the biooptical properties of brown, red, and green macroalgae. J Phycol 33:408–414

    Article  Google Scholar 

  • Grzymski J, Orrico C, Schofield OM (2001) Monochromatic ultraviolet light induced damage to Photosystem II efficiency and carbon fixation in the marine diatom Thalassiosira pseudonana (3H). Photosynth Res 68:181–192

    Article  PubMed  CAS  Google Scholar 

  • Hakala M, Tuominen I, Keranen M, Tyystjarvi T, Tyystjarvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochim Biophys Acta 1706:68–80

    Article  PubMed  CAS  Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Article  Google Scholar 

  • Hanelt D, Huppertz K, Nultsch W (1992) Photoinhibition of photosynthesis and its recovery in red algae. Bot Acta 105:278–284

    Google Scholar 

  • Hanelt D, Wiencke C, Karsten U, Nultsch W (1997) Photoinhibition and recovery after high light stress in different developmental and life-history stages of Laminaria saccharina (Phaeophyta). J␣Phycol 33:387–395

    Article  Google Scholar 

  • Hanelt D, Tüg GH, Bischof K, Groß C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658

    Article  CAS  Google Scholar 

  • Hanelt D, Wiencke C, Bischof K (2003) Photosynthesis in marine macrolage. In: Larkum AW, Douglas SE, Raven JA (eds) Photosynthesis in Algae. Kluwer Academic Publishers, The Netherlands, pp 413–435

    Google Scholar 

  • Henry EC, Cole KM (1982) Ultrastructure of swarmers in the Laminariales (Phaeophyceae), I. Zoospores. J Phycol 18:550–569

    Article  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Joska MAP, Bolton JJ (1987) In situ measurement of zoospore release and seasonality of reproduction in Ecklonia maxima (Alariaceae, Laminariales). Br Phycol J 22:209–214

    Article  Google Scholar 

  • Kessler JO (1985) Hydrodynamic focusing of motile algal cells. Nature 313:218–220

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. Wiley-Interscience, New York

    Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2005) Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosyn Res 84:1–7

    Article  PubMed  CAS  Google Scholar 

  • Norton TA (1992) Dispersal by macroalgae. Br Phycol J 27:293–301

    Article  Google Scholar 

  • Norton TA, Fetter R (1981) The settlement of Sargassum muticum propagules in stationary and flowing water. J Mar Biol Ass UK 61:929–940

    Article  Google Scholar 

  • Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44:8494–8499

    Article  PubMed  CAS  Google Scholar 

  • Öquist G, Chow WS (1992) On the relationship between the quantum yield of Photosystem II electron transport, as determined by chlorophyll fluorescence, and the quantum yield of CO2-dependent O2 evolution. Photosynth Res 33:51–62

    Article  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plant. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis, from the molecular mechanisms to the field. BIOS Scientific Publ., Oxford, pp 1–24

    Google Scholar 

  • Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11

    Article  Google Scholar 

  • Richter M, Rühle W, Wild A (1990) Studies on the mechanism of Photosystem II photoinhibition I. A two-step degradation of D1-protein. Photosynth Res 24:229–235

    Article  CAS  Google Scholar 

  • Robberecht R, Caldwell MM (1983) Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta. Plant Cell Environ 6:477–485

    Google Scholar 

  • Roleda MY, van de Poll WH, Hanelt D, Wiencke C (2004) PAR and UVBR effects on photosynthesis, viability, growth and DNA in different life stages of two coexisting Gigartinales: implications for recruitment and zonation pattern. Mar Ecol Prog Ser 281:37–50

    Article  Google Scholar 

  • Roleda MY, Wiencke C, Hanelt D, van de Poll WH, Gruber A (2005) Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant Cell Environ 28:466–479

    Article  Google Scholar 

  • Setlow RB (1974) The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci USA 71:3363–3366

    Article  PubMed  CAS  Google Scholar 

  • Stähelin J, Harris NRP, Appenzeller C, Eberhard J (2001) Ozone trends: a review. Rev Geophy 39:231–290

    Article  Google Scholar 

  • Turcsányi E, Vass I (2002) Effect of UV-A radiation on photosynthetic electron transport. Acta Biol Szeged 46:171–173

    Google Scholar 

  • Vass I (1997) Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In: Pessarakli M (eds) Handbook of photosynthesis. Marcel Dekker Inc., New York, pp␣931–949

    Google Scholar 

  • Weykam G, Gómez I, Wiencke C, Iken K, Klöser H (1996) Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204:1–22

    Article  Google Scholar 

  • Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Bot Acta 106:78–87

    Google Scholar 

  • Wiencke C, Gómez I, Pakker H, Flores-Moya A, Altamirano M, Hanelt D, Bischof K, Figueroa FL (2000) Impact of UV radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Mar Ecol Prog Ser 197:217–229

    Article  Google Scholar 

  • Wiencke C, Clayton MN, Schoenwaelder M (2004) Sensitivity and acclimation to UV radiation of zoospores from five species of Laminariales from the Arctic. Mar Biol 145:31–39

    Article  Google Scholar 

  • Wiencke C, Roleda MY, Gruber A, Clayton MN, Bischof K (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94:455–463

    Article  Google Scholar 

  • Yakandawala N, Lupi C, Bilang R, Potrykus I (2003) Lincomycin treatment: a simple method to differentiate primary and processed transcripts in rice (Oryza sativa L.) chloroplast. Plant Mol Biol Rep 21:241–247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Gruber for technical help, the diving team of Spitsbergen 2004 field campaign especially M.␣Schwanitz for collecting fertile plant material and the Ny- Ålesund International Arctic Environmental Research and Monitoring Facility for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Y. Roleda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roleda, M., Hanelt, D. & Wiencke, C. Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88, 311–322 (2006). https://doi.org/10.1007/s11120-006-9055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9055-y

Keywords

Navigation