Skip to main content
Log in

Using multi-angle hyperspectral data to monitor canopy leaf nitrogen content of wheat

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Nitrogen (N) content is an important factor that can affect wheat production. The non-destructive testing of wheat canopy leaf N content through multi-angle hyperspectral remote sensing is of great importance for wheat production and management. Based on a 2-year experiment for winter wheat in Lethbridge (Canada), Zhengzhou (China), and Kaifeng (China) growing under different cultivation practices, the authors studied the relationships between N content and wheat canopy spectral data in solar principal plane (SPP) and perpendicular plane (PP) at different observation angles. Modeling was conducted according to the spectrum index with the highest correlation coefficient and the corresponding observation angle. The results showed that correlation coefficient between the spectral index and canopy leaf N content at each observation angle of the SPP was significantly higher than that of the PP. Significant differences in the correlation coefficient were also observed at different observation angles of the same observation plane, and the correlation coefficients of angles of −30° and −40° were higher than others. A model fitted by a power function by using mND705 as independent variable at an angle of −40° in the SPP showed the highest accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asner, G. P., Braswell, B. H., Schimel, D. S., & Wessman, C. A. (1998). Ecological research needs from multiangle remote sensing data. Remote Sensing of Environment, 63, 155–165.

    Article  Google Scholar 

  • Boyd, D. S., Foody, G. M., & Ripple, W. J. (2002). Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing. Applied Geography, 22(4), 375–392.

    Article  Google Scholar 

  • Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.

    Article  Google Scholar 

  • Cao, Q., Miao, Y. X., Wang, H. Y., Huang, S. Y., Cheng, S. S., Khosla, R., et al. (2013). Non-destructive estimation of rice plant nitrogen status with crop circle multispectral active canopy sensor. Field Crop Research, 154, 133–144.

    Article  Google Scholar 

  • Despan, D., Bedidi, A., & Cervelle, B. (1999). Bidirectional reflectance of rough bare soil surfaces. Geophysical Research Letters, 26(17), 2777–2780.

    Article  Google Scholar 

  • Feng, W., Guo, B. B., Wang, Z. J., He, L., Song, X., Wang, Y. H., & Guo, T. C. (2014). Measuring leaf nitrogen concentration in winter wheat using double-peak spectral reflection remote sensing data. Field Crops Research., 159, 43–52.

    Article  Google Scholar 

  • Feng, W., Yao, X., Zhu, Y., Tian, Y. C., & Cao, W. X. (2008). Monitoring leaf nitrogen concentration by hyperspectral remote sensing in wheat. European Journal of Agronemy, 28, 394–404.

    Article  CAS  Google Scholar 

  • Gamon, J. A., Penuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35–44.

    Article  Google Scholar 

  • Gao, F., Schaaf, C. B., & Strahler, A. H. (2003). Detecting vegetation structure using a kernel-based BRDF model. Remote Sensing of Environment, 86, 198–205.

    Article  Google Scholar 

  • García-Haro, F. J., & Sommer, S. (2002). A fast canopy reflectance model to simulate realistic remote sensing scenarios. Remote Sensing of Environment, 81, 205–227.

    Article  Google Scholar 

  • Gong, P., Pu, R., & Heald, R. C. (2002). Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. International Journal of Remote Sensing, 23, 1827–1850.

    Article  Google Scholar 

  • Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542–553.

    Article  Google Scholar 

  • He, L., Zhang, H. Y., Zhang, Y. S., Song, X., Feng, W., Kang, G. Z., et al. (2015). Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. European Journal of Agronomy, 73, 170–185.

    Article  Google Scholar 

  • Hu, H., Bai, Y. L., Yang, L. P., Lu, Y. L., Wang, L., Wang, H., & Kong, Q. B. (2009). Red edge parameters of winter wheat canopy under different nitrogen levels. Plant Nutrition and Fertilizer Science, 15(6), 1317–1323. (in Chinese).

    CAS  Google Scholar 

  • Huang, W. J., Wang, Z. J., Huang, L. S., Lamb, D. W., Ma, Z. H., Zhang, J. C., et al. (2011). Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat. Precision Agriculture, 12(2), 165–178.

    Article  Google Scholar 

  • Jain, N., Ray, S. S., Singh, J. P., & Panigrahy, S. (2007). Use of hyperspectral data to assess the effects of different nitrogen applications on a potato crop. Precision Agriculture, 8(4/5), 225–239.

    Article  Google Scholar 

  • Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crop Research, 27, 337–350.

    Article  Google Scholar 

  • Li, F., Mistele, B., Hu, Y. C., Yue, X. L., Yue, S. C., Miao, Y. X., et al. (2012). Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany. Field Crops Research., 138, 21–32.

    Article  Google Scholar 

  • Liang, L., Yang, M. H., Deng, K. D., Zhang, L. P., Lin, H., & Liu, Z. X. (2011). A new hyperspectral index for the estimation of nitrogen contents of wheat canopy. Acta Ecologica Sinica, 31(21), 6594–6605.

    CAS  Google Scholar 

  • Osborne, S. L., Sehepers, J. S., & Schlemmer, M. R. (2004). Using multi-spectral imagery to evaluate corn grown under nitrogen and drought stressed conditions. Plant Nutrition, 27(11), 1917–1929.

    Article  CAS  Google Scholar 

  • Rajeev, R., Chopra, U. K., Sahoo, R. N., Singh, A. K., & Pradhan, S. (2012). Assessment of plant nitrogen stress in wheat Triticum aestivum L. through hyperspectral indices. International Journal of Remote Sensing, 20, 6342–6360.

    Google Scholar 

  • Ryu, C., Suguri, M., & Umeda, M. (2009). Model for predicting the nitrogen content of rice at panicle initiation stage using data from airborne hyperspectral remote sensing. Biosystems Engineering, 104(4), 465–475.

    Article  Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.

    Article  Google Scholar 

  • Stroppiana, D., Boschetti, M., Brivio, P. A., & Bocchi, S. (2009). Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research, 111, 119–129.

    Article  Google Scholar 

  • Wang, Z., Coburnb, C. A., Ren, X., & Teillet, P. M. (2012). Effect of soil surface roughness and scene components on soil surface bidirectional reflectance factor. Canadian Journal of Soil Science, 92, 297–313.

    Article  Google Scholar 

  • Wu, C. Y., Niu, Z., & Wang, J. D. (2010). Predicting leaf area index in wheat using angular vegetation indices derived from in situ canopy measurements. Canada Journal of Remote Sensing, 36(4), 301–312.

    Article  Google Scholar 

  • Xue, L. H., Cao, W. X., Luo, W. H., Dai, T. B., & Zhu, Y. (2004). Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 96(1), 135–142.

    Article  Google Scholar 

  • Yang, M. H., Liu, L. Y., Liu, T. J., Huang, W. J., & Zhao, C. J. (2002). Research on a method to retrieve biophysical and biochemical parameters of wheat canopy with hyperspectral remote sensing. Acta Geodaetica et Cartographica Sinica, 31(4), 316–321. (in Chinese).

    Google Scholar 

  • Zhu, Y., Li, Y., Feng, W., Tian, Y., & Cao, W. (2006). Monitoring leaf nitrogen in wheat using canopy reflectance spectra. Canadian Journal of Plant Science, 86, 1037–1046.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Modern Agricultural Technical System of China Special Foundation for Agro-scientific Research in the Public Interest (201203096, 201303109). The authors are grateful to Henan Agricultural University in China for funding and guidance and thank the University of Lethbridge for the use of the Goniometer System version 2.0 (ULGS-2.0) and technical guidance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Feng or Tiancai Guo.

Additional information

Duanyang Xu is the Co-first author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Xu, D., He, L. et al. Using multi-angle hyperspectral data to monitor canopy leaf nitrogen content of wheat. Precision Agric 17, 721–736 (2016). https://doi.org/10.1007/s11119-016-9445-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9445-x

Keywords

Navigation