Skip to main content
Log in

The \(L^{\infty }\)-positivity Preserving Property and Stochastic Completeness

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We say that a Riemannian manifold satisfies the Lp-positivity preserving property if (−Δ + 1)u ≥ 0 in a distributional sense implies u ≥ 0 for all uLp. While geodesic completeness of the manifold at hand ensures the Lp-positivity preserving property for all \(p \in (1, +\infty )\), when \(p = + \infty \) some assumptions are needed. In this paper we show that the \(L^{\infty }\)-positivity preserving property is in fact equivalent to stochastic completeness, i.e., the fact that the minimal heat kernel of the manifold preserves probability. The result is achieved via some monotone approximation results for distributional solutions of −Δ + 1 ≥ 0, which are of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum principles and geometric applications. Springer Monographs in Mathematics. Springer, Cham (2016)

  2. Bianchi, D., Setti, A. G.: Laplacian cut-offs porous and fast diffusion on manifolds and other applications. Calc. Var. Partial Differential Equations 57, 1, Paper No. 4, 33 (2018)

  3. Bonfiglioli, A., Lanconelli, E.: Subharmonic functions in sub-Riemannian settings. J. Eur. Math. Soc. 15(2), 387–441 (2013)

    Article  MathSciNet  Google Scholar 

  4. Braverman, M., Milatovich, O., Shubin, M.: Essential selfadjointness of Schrödinger-type operators on manifolds. Uspekhi Mat. Nauk 57 4(346), 3–58 (2002)

    Google Scholar 

  5. Charalambous, N., Lu, Z.: Heat kernel estimates and the essential spectrum on weighted manifolds. J. Geom. Anal. 25(1), 536–563 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cupini, G., Lanconelli, E.: On mean value formulas for solutions to second order linear pdes. Annali. della Scuola Normale Superiore di Pisa Classe di scienze 22(2), 777–809 (2021)

    MathSciNet  Google Scholar 

  7. Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Commun. Pure Appl. Math. 33(2), 199–211 (1980)

    Article  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition

  9. Grigor’yan, A.: Geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math Analytic Soc. (N.S.) 36(2), 135–249 (1999)

    Article  MathSciNet  Google Scholar 

  10. Grigor’yan, A.: Heat kernels on weighted manifolds and applications. In: The ubiquitous heat kernel, vol. 398 of Contemp. Math. Amer. Math. Soc., Providence, RI, pp. 93–191 (2006)

  11. Grigor’yan, A.: Heat kernel and analysis on manifolds, vol. 47 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI; International Press, Boston MA (2009)

  12. Grillo, G., Ishige, K., Muratori, M.: Nonlinear characterizations of stochastic completeness. J. Math Pures Appl. (9) 139, 63–82 (2020)

    Article  MathSciNet  Google Scholar 

  13. Güneysu, B.: Sequences of Laplacian cut-off functions. J. Geom. Anal. 26(1), 171–184 (2016)

    Article  MathSciNet  Google Scholar 

  14. Güneysu, B.: The BMS conjecture. Ulmer Seminare 20, 97–101 (2017). arXiv:1709.07463

    Google Scholar 

  15. Güneysu, B.: Covariant Schrödinger semigroups on Riemannian manifolds, vol. 264 of Operator theory: Advances and Applications. Birkhäuser/springer, Cham (2017)

  16. Güneysu, B., Post, O.: Path integrals and the essential self-adjointness of differential operators on noncompact manifolds. Math. Z. 275(1-2), 331–348 (2013)

    Article  MathSciNet  Google Scholar 

  17. Heikkilä, S., Lakshmikantham, V.: Monotone iterative techniques for discontinuous nonlinear differential equations. Routledge (2017)

  18. Honda, S., Mari, L., Rimoldi, M., Veronelli, G.: Density and non-density of \(C_{c},^{\infty }\hookrightarrow W^{k,p}\) on complete manifolds with curvature bounds. Nonlinear Anal. 211, Paper No. 112429, 26 (2021)

  19. Hsu, P.: Heat semigroup on a complete Riemannian manifold. Ann. Probab. 17(3), 1248–1254 (1989)

    Article  MathSciNet  Google Scholar 

  20. Kato, T.: Schrödinger operators with singular potentials. Israel J. Math. 13(1972), 135–148 (1973)

    Google Scholar 

  21. Marini, L., Veronelli, G.: Some functional properties on cartan-hadamard manifolds of very negative curvature. arXiv:2105.09024 (2021)

  22. Ni, L.: Mean value theorems on manifolds. Asian J. Math. 11(2), 277–304 (2007)

    Article  MathSciNet  Google Scholar 

  23. Pigola, S., Rigoli, M., Setti, G.A.: Remark on the maximum principle and stochastic completeness. Proc. Amer. Math. Soc. 131(4), 1283–1288 (2003)

    Article  MathSciNet  Google Scholar 

  24. Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. Amer. Math. Soc. 174, 822 (2005). x + 99

    MathSciNet  Google Scholar 

  25. Pigola, S., Veronelli, G.: Lp Positivity Preserving And a conjecture by M. Braverman, O. Milatovic and M. Shubin. arXiv:2105.14847 (2021)

  26. Protter, M.H., Weinberger, H.F.: Maximum principles in differential equations. Springer, New York (1984). Corrected reprint of the 1967 original

    Book  Google Scholar 

  27. Ratto, A., Rigoli, M., Véron, L.: Scalar curvature and conformal deformation of hyperbolic space. J. Funct. Anal. 121(1), 15–77 (1994)

    Article  MathSciNet  Google Scholar 

  28. Sattinger, D.H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana University Math. J. 21(11), 979–1000 (1972)

    Article  MathSciNet  Google Scholar 

  29. Shubin, M.: Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds. J. Funct. Anal. 186(1), 92–116 (2001)

    Article  MathSciNet  Google Scholar 

  30. Sjögren, P.: On the adjoint of an elliptic linear differential operator and its potential theory. Ark. Mat. 11(1), 153–165 (1973)

    Article  MathSciNet  Google Scholar 

  31. Yau, S.T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. J. Indiana Univ. Math 25(7), 659–670 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Giona Veronelli for several suggestions and for its contributions to the counterexample of Section ??, and Stefano Pigola for fruitful discussions on the manuscript. Both authors are member of the INdAM GNAMPA group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovico Marini.

Ethics declarations

The manuscript contains no data.

Conflict of Interests

The authors have no conflict of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisterzo, A., Marini, L. The \(L^{\infty }\)-positivity Preserving Property and Stochastic Completeness. Potential Anal 59, 2017–2034 (2023). https://doi.org/10.1007/s11118-022-10041-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-022-10041-w

Keywords

Mathematics Subject Classification (2010)

Navigation