Skip to main content
Log in

Log-Hessian and Deviation Bounds for Markov Semi-Groups, and Regularization Effect in \(\mathbb {L}^{1}\)

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

It is well known that some important Markov semi-groups have a “regularization effect” – as for example th hypercontractivity property of the noise operator on the Boolean hypercube or the Ornstein-Uhlenbeck semi-group on the real line, which applies to functions in Lp for p > 1. Talagrand had conjectured in 1989 that the noise operator on the Boolean hypercube has a further subtle regularization property for functions that are just integrable, but this conjecture remains open. Nonetheless, the Gaussian analogue of this conjecture was proven in recent years by Eldan-Lee and Lehec, by combining an inequality for the log-Hessian of the Ornstein-Uhlenbeck semi-group with a new deviation inequality for log-semi-convex functions under Gaussian measure. In this work, we explore the question of how much more general this phenomenon is. Specifically, our first goal is to explore the validity of both these ingredients for some diffusion semi-groups in \(\mathbb {R}^{n}\), as well as for the \(M/M/\infty \) queue on the non-negative integers and the Laguerre semi-groups on the positive real line. Our second goal is to prove a one-dimensional regularization effect for these settings, even in those cases where these ingredients are not valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gozlan, N., Madiman, M., Roberto, C., Samson, P.M.: Deviation inequalities for convex functions motivated by the Talagrand conjecture. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 457(Veroyatnosti Statistika. 25), 168–182 (2017)

    MATH  Google Scholar 

  2. Eldan, R., Lee, J.R.: Regularization under diffusion and anticoncentration of the information content. Duke Math. J. 167(5), 969–993 (2018)

    Article  MATH  Google Scholar 

  3. Lehec, J.: Regularization in L1 for the Ornstein-Uhlenbeck semigroup. Ann. Fac. Sci. Toulouse Math. (6) 25 (1), 191–204 (2016)

    Article  MATH  Google Scholar 

  4. Talagrand, M.: A conjecture on convolution operators, and a non-Dunford-Pettis operator on L1. Israel J. Math. 68(1), 82–88 (1989)

    Article  MATH  Google Scholar 

  5. Bonami, A.: Étude des coefficients de Fourier des fonctions de Lp(G) Ann. Inst. Fourier (Grenoble) 20(fasc. 2) (1970)

  6. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. (2) 102 (1), 159–182 (1975)

    Article  MATH  Google Scholar 

  7. Ball, K., Barthe, F., Bednorz, W., Oleszkiewicz, K., Wolff, P.: L1-smoothing for the Ornstein-Uhlenbeck semigroup. Mathematika 59(1), 160–168 (2013)

    Article  MATH  Google Scholar 

  8. Gross, L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97(4), 1061–1083 (1975)

    Article  MATH  Google Scholar 

  9. Eberle, A.: Absence of spectral gaps on a class of loop spaces. J. Math. Pures Appl. (9) 81(10), 915–955 (2002)

    Article  MATH  Google Scholar 

  10. Gong, F.-Z., Ma, Z.-M.: The log-Sobolev inequality on loop space over a compact Riemannian manifold. J. Funct. Anal. 157(2), 599–623 (1998)

    Article  MATH  Google Scholar 

  11. Aida, S.: Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spaces. J. Funct. Anal. 174 (2), 430–477 (2000)

    Article  MATH  Google Scholar 

  12. Chen, X., Li, X.-M., Wu, B.: A Poincaré inequality on loop spaces. J. Funct. Anal. 259(6), 1421–1442 (2010)

    Article  MATH  Google Scholar 

  13. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3-4), 153–201 (1986)

    Article  Google Scholar 

  14. Barron, A.R.: Entropy and the central limit theorem. Ann. Probab. 14, 336–342 (1986)

    Article  MATH  Google Scholar 

  15. Artstein, S., Ball, K.M., Barthe, F., Naor, A.: Solution of Shannon’s problem on the monotonicity of entropy. J. Amer. Math. Soc. 17(4), 975–982 (electronic) (2004)

    Article  MATH  Google Scholar 

  16. Madiman, M., Barron, A.: The monotonicity of information in the central limit theorem and entropy power inequalities. In: 2006 IEEE International Symposium on Information Theory, pp 1021–1025. IEEE (2006)

  17. Borell, C.: The Ehrhard inequality. C. R. Math. Acad. Sci. Paris 337(10), 663–666 (2003)

    Article  MATH  Google Scholar 

  18. Johnson, O.: Log-concavity and the maximum entropy property of the Poisson distribution. Stoch. Process. Appl. 117(6), 791–802 (2007)

    Article  MATH  Google Scholar 

  19. Bennett, J., Carbery, A., Christ, M., Tao, T.: The Brascamp-Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17 (5), 1343–1415 (2008)

    Article  MATH  Google Scholar 

  20. Johnson, O., Kontoyiannis, I., Madiman, M.: On the entropy and log-concavity of compound Poisson measures. Preprint, arXiv:0805:4112 (2008)

  21. Barthe, F., Huet, N.: On Gaussian Brunn–Minkowski inequalities. Studia Math. 191(3), 283–304 (2009)

    Article  MATH  Google Scholar 

  22. Sheu, S.-J.: Some estimates of the transition density of a nondegenerate diffusion Markov process. Ann. Probab. 19(2), 538–561 (1991)

    Article  MATH  Google Scholar 

  23. Elworthy, K.D., Li, X.-M.: Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125(1), 252–286 (1994)

    Article  MATH  Google Scholar 

  24. Malliavin, P., Stroock, D.W.: Short time behavior of the heat kernel and its logarithmic derivatives. J. Differential Geom. 44(3), 550–570 (1996)

    Article  MATH  Google Scholar 

  25. Arnaudon, M., Plank, H., Thalmaier, A.: A Bismut type formula for the Hessian of heat semigroups. C. R. Math. Acad. Sci. Paris 336(8), 661–666 (2003)

    Article  MATH  Google Scholar 

  26. Li, X.-M.: Hessian formulas and estimates for parabolic Schrödinger operators. arXiv:https://arxiv.org/abs/1610.09538 (2016)

  27. Li, X.-M.: Doubly damped stochastic parallel translations and Hessian formulas. In: Stochastic partial differential equations and related fields, Springer Proc. Math. Stat., vol. 229, pp 345–357. Springer (2018)

  28. Li, X.-M.: On the semi-classical Brownian bridge measure. Electron. Commun. Probab. 22, Paper No. 38, 15 (2017)

    Article  MATH  Google Scholar 

  29. Li, X.-M.: Generalised Brownian bridges: examples. Markov Process. Related Fields 24(1), 151–163 (2018)

    MATH  Google Scholar 

  30. Donati-Martin, C.: Le problème de Buffon-Synge pour une corde. Adv. Appl. Probab. 22(2), 375–395 (1990)

    Article  MATH  Google Scholar 

  31. Barczy, M., Kern, P.: Sample path deviations of the Wiener and the Ornstein-Uhlenbeck process from its bridges. Braz. J. Probab. Stat. 27(4), 437–466 (2013)

    Article  MATH  Google Scholar 

  32. Gozlan, N., Roberto, C., Samson, P.-M.: A new characterization of Talagrand’s transport-entropy inequalities and applications. Ann. Probab. 39(3), 857–880 (2011)

    Article  MATH  Google Scholar 

  33. Gozlan, N., Roberto, C., Samson, P.-M.: Characterization of Talagrand’s transport-entropy inequalities in metric spaces. Ann. Probab. 41(5), 3112–3139 (2013)

    Article  MATH  Google Scholar 

  34. Li, X.-M.: Stochastic flows on non-compact manifolds. Ph.D. Thesis, University of Warwick (1992)

  35. Johnson, O., Kontoyiannis, I., Madiman, M.: Log-concavity, ultra-log-concavity, and a maximum entropy property of discrete compound Poisson measures. Discret. Appl. Math. 161, 1232–1250 (2013). https://doi.org/10.1016/j.dam.2011.08.025

    Article  MATH  Google Scholar 

  36. Barbour, A.D., Johnson, O., Kontoyiannis, I., Madiman, M.: Compound Poisson approximation via information functionals. Electron. J. Probab. 15(42), 1344–1368 (2010)

    MATH  Google Scholar 

  37. Walkup, D.W.: Pólya sequences, binomial convolution and the union of random sets. J. Appl. Probab. 13(1), 76–85 (1976)

    Article  MATH  Google Scholar 

  38. Liggett, T.M.: Ultra logconcave sequences and negative dependence. J. Combin. Theory Ser. A 79(2), 315–325 (1997)

    Article  MATH  Google Scholar 

  39. Gurvits, L.: A short proof, based on mixed volumes, of Liggett’s theorem on the convolution of ultra-logconcave sequences. Electron. J. Combin. 16(1), Note 5, 5 (2009)

    Article  MATH  Google Scholar 

  40. Nayar, P., Oleszkiewicz, K.: Khinchine type inequalities with optimal constants via ultra log-concavity. Positivity 16(2), 359–371 (2012)

    Article  MATH  Google Scholar 

  41. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MATH  Google Scholar 

  42. Ishige, K., Salani, P., Takatsu, A.: To logconcavity and beyond. Commun. Contemp. Math. 22(2), 1950009, 17 (2020)

    Article  MATH  Google Scholar 

  43. Robbins, H.: A remark on Stirling’s formula. Amer. Math. Monthly 62, 26–29 (1955)

    MATH  Google Scholar 

  44. Bobkov, S.G., Tetali, P.: Modified logarithmic sobolev inequalities in discrete settings. Jour. Theor. Probab. 19(2), 289–336 (2006)

    Article  MATH  Google Scholar 

  45. Breton, J-C, Houdré, C., Privault, N.: Dimension free and infinite variance tail estimates on Poisson space. Acta Appl. Math. 95, 151–203 (2007)

    Article  MATH  Google Scholar 

  46. Kontoyiannis, I., Madiman, M.: Measure concentration for Compound Poisson distributions. Elect. Comm. Probab. 11, 45–57 (2006)

    MATH  Google Scholar 

  47. Nourdin, I., Peccati, G., Yang, X.: Restricted hypercontractivity on the Poisson space. Proc. Amer. Math. Soc. 148(8), 3617–3632 (2020)

    Article  MATH  Google Scholar 

  48. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington (1964)

  49. Korzeniowski, A.: On logarithmic Sobolev constant for diffusion semigroups. J. Funct. Anal. 71(2), 363–370 (1987)

    Article  MATH  Google Scholar 

  50. Graczyk, P., Loeb, J.-J., López, P.I.A., Nowak, A., Urbina, R.W.O.: Higher order Riesz transforms, fractional derivatives, and Sobolev spaces for Laguerre expansions. J. Math. Pures Appl. (9) 84(3), 375–405 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank Zhen-Qing Chen for enlightening discussions on the topic of this paper and an anonymous referee for his/her constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Roberto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the grants ANR-15-CE40-0020-03 -LSD -Large Stochastic Dynamics; ANR 10-LABX-0058 -Labex Bezout; ANR 11-LBX-0023-01 -Labex MME-DII and the grant DMS-1409504 from the U.S. National Science Foundation. Nathael Gozlan, Cyril Roberto and Paul-Marie Samson are supported by a grant of the Simone and Cino Del Duca foundation. This research has been conducted within the FP2M federation (CNRS FR 2036). Li’s research is partially supported by EP/S023925/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozlan, N., Li, XM., Madiman, M. et al. Log-Hessian and Deviation Bounds for Markov Semi-Groups, and Regularization Effect in \(\mathbb {L}^{1}\). Potential Anal 58, 123–158 (2023). https://doi.org/10.1007/s11118-021-09934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09934-z

Keywords

Mathematics Subject Classification (2010)

Navigation