Skip to main content
Log in

On the Green Function and Poisson Integrals of the Dunkl Laplacian

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove the existence and study properties of the Green function of the unit ball for the Dunkl Laplacian △ k in \(\mathbb {R}^{d}\). As applications we derive the Poisson-Jensen formula for △ k -subharmonic functions and Hardy-Stein identities for the Poisson integrals of △ k . We also obtain sharp estimates of the Newton potential kernel, Green function and Poisson kernel in the rank one case in \(\mathbb {R}^{d}\). These estimates contrast sharply with the well-known results in the potential theory of the classical Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, A.: First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds or domains. J. Anal, Math. 72, 45–92 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G.: On the Green’s function for second order parabolic differential equations with discontinuous coefficients. Bull. Amer. Math. Soc. 69(6), 841–847 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogdan, K.: Sharp estimates for the Green function in Lipschitz domains. J. Math. Anal. Appl. 243, 326–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogdan, K., Dyda, B., Luks, T.: On Hardy spaces of local and nonlocal operators. Hiroshima Math. J. 44(2), 193–215 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Bogdan, K., Jakubowski, T.: Estimates of the Green function for the fractional Laplacian perturbed by gradient. Potential Anal. 36(3), 455–481 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z.-Q., Song, R.: Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312(3), 465–501 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Chrouda, M.: On the Dirichlet problem associated with the Dunkl Laplacian. Ann. Polon. Math. 117(1), 79–87 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Cranston, M., Zhao, Z.: Conditional transformation of drift formula and potential theory for \(\frac 12{\Delta }+b(\cdot )\cdot \nabla \). Comm. Math. Phys. 112, 613–625 (1987)

  9. van Diejen, J.F., Vinet, L.: Calogero-Sutherland-Moser Models. Springer-Verlag, CRM Series in Mathematical Physics (2000)

  10. Doob, J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Springer-Verlag, New York (1984)

    Book  MATH  Google Scholar 

  11. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311, 167–183 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunkl, C.F.: Integral kernels with reflection group invariance. Canad. J. Math. 43, 1213–1227 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables Encyclopedia of Mathematics and Its Applications, vol. 81. Cambridge University Press, Cambridge (2001)

  14. El Kamel, J., Yacoub, C.H.: Poisson integrals and kelvin transform associated to Dunkl-Laplacian operator. Global J. Pure Appl. Math. 3(3), 351 (2007)

    Google Scholar 

  15. Gallardo, L., Rejeb, C.: A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications. Trans. Amer. Math. Soc. 368, 3727–3753 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gallardo, L., Rejeb, C.: Newtonian potentials and subharmonic functions associated to root systems, preprint (2016), available at https://hal.archives-ouvertes.fr/hal-01368871

  17. Gallardo, L., Yor, M.: Some new examples of Markov processes which enjoy the time-inversion property. Probab. Theory Relat. Fields 132, 150–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grüter, M., Widman, K.-O.: The Green function for uniformly elliptic equations. Manuscripta Math. 37, 303–342 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grzywny, T., Ryznar, M.: Estimates of Green functions for some perturbations of fractional Laplacian. Ill. J. Math. 51(4), 1409–1438 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Hassine, K.: Mean value property of d k -harmonic functions on W-invariant open sets. Afr. Mat. 27(7), 1275–1286 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hayman, W.K., Kennedy, P.B.: Subharmonic functions, vol. 1. Academic Press, London (1976)

  22. Jakubowski, T.: The estimates for the Green function in Lipschitz domains for the symmetric stable processes. Probab. Math. Stat. 22, 419–441 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Kim, P., Song, R.: Estimates on Green functions and schrödinger-type equations for non-symmetric diffusions with measure-valued drifts. J. Math. Anal. Appl. 332, 57–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kulczycki, T.: Properties of Green function of symmetric stable processes. Probab. Math. Stat. 17, 339–364 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa (III) 17, 43–77 (1963)

    MathSciNet  MATH  Google Scholar 

  26. Maslouhi, M., Youssfi, E.H.: Harmonic functions associated to Dunkl Laplacian. Monatsh. Math. 152, 337–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rejeb, C.: Harmonic and subharmonic functions associated to root systems, Ph.D. thesis, University of Tours, University of Tunis El Manar. available at https://tel.archives-ouvertes.fr/tel-01291741/ (2015)

  28. Rösler, M.: Positivity of Dunkl’s intertwining operator. Duke Math. J. 98, 445–463 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rösler, M.: A positive radial product formula for the Dunkl kernel. Trans. Amer. Math. Soc. 355, 2413–2438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rösler, M.: Dunkl operators: Theory and applications Orthogonal polynomials and special functions, Leuven 2002, Springer Lecture Notes in Math, vol. 1817, pp. 93–135 (2003)

  31. Rösler, M., Voit, M.: Dunkl Theory, Convolution Algebras, and Related Markov Processes. In: Graczyk, P., Rösler, M., Yor, M. (eds.) Harmonic and Stochastic Analysis of Dunkl Processes. Travaux en cours 71, pp. 1–112. Hermann, Paris (2008)

    Google Scholar 

  32. Stein, E.M.: Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press and University of Tokyo Press, Princeton, New Jersey (1972)

  33. Trimèche, K.: Paley-wiener Theorems for the Dunkl transform and Dunkl translation operators. Integral Transform. Spec. Funct. 13, 17–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Widman, K.-O.: Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21, 17–37 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, Z.: Uniform boundedness of conditional gauge and schrödinger equations. Comm. Math. Phys. 93, 19–31 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, Z.: Green function for schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl. 116, 309–334 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Luks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graczyk, P., Luks, T. & Rösler, M. On the Green Function and Poisson Integrals of the Dunkl Laplacian. Potential Anal 48, 337–360 (2018). https://doi.org/10.1007/s11118-017-9638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-017-9638-6

Keywords

Mathematics Subject Classification (2010)

Navigation