Skip to main content
Log in

Functional Central Limit Theorem for Additive Functionals of α-stable Processes

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let β be a standard Brownian motion, let X be an α-stable process, and let \(f=\widehat \mu\) be the Fourier transform of a discrete measure. It is shown that weakly in C([0, + ∞ )),

$$ \eta ^{\alpha /2} \int_0^t f(\eta X_s)\text{d}s \Rightarrow \sqrt{C_{f,\alpha}}\beta_t\qquad \text{as $\eta\to +\infty$,} $$

or equivalently

$$ \frac 1 {\sqrt{\lambda}} \int_0^{\lambda t} f(X_s)\text{d}s \Rightarrow \sqrt{C_{f,\alpha}}\beta_t\qquad \text{as $\lambda \to +\infty$.} $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  2. Bingham N.H.: Limit theorems for occupation times of Markov processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 17, 1–22 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  4. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  5. Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Occupation time limits of inhomogeneous Poisson systems of independent particles. Stoch. Process. Their Appl. 118, 28–52 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Darling, D.A., Kac, M.: On occupation times for Markoff processes. Trans. Am. Math. Soc. 84, 444–458 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fitzsimmons, P.J., Getoor R.K.: On the distribution of Hilbert transform of the local time of a symmetric Lévy process. Ann. Probab. 20, 1484–1497 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jacod, J., Shiryev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Kallianpur, G., Robbins, H.: Ergodic property of the Brownian motion process. Proc. Nat. Acad. Sci. U. S. A. 39, 525–533 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kasahara, Y., Kotani, S.: On limit processes for a class of additive functionals of recurrent diffusion processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 133–153 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kôno, N.: Kallianpur-Robbins law for fractional Brownian motion. In: Probability Theory and Mathematical Statistics (Tokyo, 1995), pp. 229–236. World Sci., River Edge (1996)

    Google Scholar 

  13. Papanicolaou, G.C., Stroock, D., Varadhan, S.R.S.: Martingale approach to some limit theorems. In: In the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Duke Univ. Math. Ser., vol. III. Duke Univ., Durham (1977)

    Google Scholar 

  14. Peszat, S., Russo, F.: Large noise asymptotics for one-dimensional diffusions. Bernoulli 11, 247–262 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. Grundlehren der Mathematischen Wissenschaften, 293. Springer-Verlag, Berlin (1991)

    MATH  Google Scholar 

  16. Rosen, J.: Second order limit laws for the local times of stable processes. Séminaire de Probabilités, XXV, pp. 407–424. Lecture Notes in Math., 1485. Springer, Berlin (1991)

    Google Scholar 

  17. Takeda, M.: Asymptotic properties of generalized Feynman–Kac functionals. Potential Anal. 5, 261–291 (1998)

    Article  MathSciNet  Google Scholar 

  18. Takeda, M.: Large deviation principle for additive functionals of Brownian motion. Potential Anal. 19, 51–67 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yamada, T.: On some limit theorems for occupation times of one dimensional Brownian motion and its continuous additive functionals locally of zero energy. J. Math. Kyoto Univ. 26, 309–322 (1986)

    MATH  MathSciNet  Google Scholar 

  20. Yamada, T.: Principal values of Brownian local times and their related topics. In: Itô’s Stochastic Calculus and Probability Theory, CMS Conf. Proc., vol. 26, pp. 413–422. Springer, Tokyo (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Talarczyk.

Additional information

The work has been supported by Polish Ministry of Science and Higher Education Grants PO3A03429 (S.P.) and 1P03A01129 (A.T.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peszat, S., Talarczyk, A. Functional Central Limit Theorem for Additive Functionals of α-stable Processes. Potential Anal 33, 199–209 (2010). https://doi.org/10.1007/s11118-009-9166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-009-9166-0

Keywords

Mathematics Subject Classifications (2000)

Navigation