Skip to main content
Log in

Positive semigroups and algebraic Riccati equations in Banach spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We generalize Wonham’s theorem on solvability of algebraic operator Riccati equations to Banach spaces, namely there is a unique stabilizing solution to \(A^*P+PA-PBB^*P+C^*C=0\) when (AB) is exponentially stabilizable and (CA) is exponentially detectable. The proof is based on a new approach that treats the linear part of the equation as the generator of a positive semigroup on the space of symmetric operators from a Banach space to its dual, and the quadratic part as an order concave map. A direct analog of global Newton’s iteration for concave functions is then used to approximate the solution, the approximations converge in the strong operator topology, and the convergence is monotone. The linearized equations are the well-known Lyapunov equations of the form \(A^*P+PA=-Q\), and semigroup stability criterion in terms of them is also generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abouzaid, B., Achhab, M., Wertz, M.: Stabilization of a class of partially observed infinite-dimensional systems with control constraints. IMA J. Math. Control Inf. 26(1), 79–94 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Da Prato, G., Delfour, M., Mitter, S.: Representation and Control of Infinite Dimensional Systems, 2nd edn. Birkhäuser, Boston (2007)

    Book  MATH  Google Scholar 

  4. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics 1, Texts and Monographs in Physics. Springer, New York (1987)

    Book  Google Scholar 

  5. Clément, P., et al.: One-Parameter Semigroups, CWI Monographs, vol. 5. North-Holland Publishing Co., Amsterdam (1987)

    Google Scholar 

  6. Curtain, R., Pritchard, A.: Infinite dimensional linear systems theory. Lecture Notes in Control and Information Sciences, vol. 8. Springer, Berlin (1978)

  7. Damm, T., Hinrichsen, D.: Newton’s method for a rational matrix equation occurring in stochastic control. Linear Algebra Appl. 332/334, 81–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dixmier, J.: Von Neumann Algebras. North-Holland Publishing, Amsterdam (1981)

    MATH  Google Scholar 

  9. Drivaliaris, D., Yannakakis, N.: Hilbert space structure and positive operators. J. Math. Anal. Appl. 305(2), 560–565 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

  11. Freeman, J.: The tensor product of semigroups and the operator equation \(SX-XT=A\). J. Math. Mech. 19, 819–828 (1969/1970)

  12. Goldys, B., van Neerven, J.: Transition semigroups of Banach space-valued Ornstein–Uhlenbeck processes. Acta Appl. Math. 76(3), 283–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kalton, N., Konyagin, S., Veselý, L.: Delta-semidefinite and delta-convex quadratic forms in Banach spaces. Positivity 12(2), 221–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kantorovich, L., Akilov, G.: Functional Analysis. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  15. Kleinman, D.: Iteration method of solving Riccati equation. IEEE Trans. Autom. Control AC13, 114–115 (1968)

  16. Koshkin, S.: Concave equations in Banach cones. Appl. Anal. 80(3–4), 449–475 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koshkin, S.: Positive semigroups and abstract Lyapunov equations. Positivity (2014). doi:10.1007/s11117-014-0279-3

    MathSciNet  MATH  Google Scholar 

  18. Kühnemund, F.: Bi-continuous semigroups on spaces with two topologies: theory and applications, Dissertation Universität Tübingen. http://tobias-lib.uni-tuebingen.de/volltexte/2001/236 (2001)

  19. Leung, A.: Nonlinear Systems of Partial Differential Equations. World Scientific, Hackensack (2009)

    Book  Google Scholar 

  20. van Neerven, J.: Null controllability and the algebraic Riccati equation in Banach spaces. SIAM J. Control Optim. 43(4), 1313–1327 (2004/2005)

  21. Pisier, G.: Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, vol. 60. American Mathematical Society, Providence (1986)

    Book  Google Scholar 

  22. Priola, E., van Neerven, J.: Null controllability with vanishing energy. SIAM J. Control Optim. 42(3), 1013–1032 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ran, A., van der Mee, C.: Perturbation results for exponentially dichotomous operators on general Banach spaces. J. Funct. Anal. 210(1), 193–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  25. Ryan, R.: Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics. Springer, London (2002)

    Book  Google Scholar 

  26. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  27. Sari, B., Schlumprecht, T., Tomczak-Jaegermann, N., Troitsky, V.: On norm closed ideals in \(L(l_p, l_q)\). Studia Math. 179(3), 239–262 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schaefer, H.: Topological Vector Spaces, Graduate Texts in Mathematics, vol. 3. Springer, New York (1971)

    Book  Google Scholar 

  29. Vainberg, M.: Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. Halsted Press, New York (1973)

    MATH  Google Scholar 

  30. Wonham, W.: Linear Multivariable Control. A Geometric Approach, Applications of Mathematics, vol. 10. Springer, New York (1985)

  31. Yosida, K.: Functional Analysis, Die Grundlehren der Mathematischen Wissenschaften, vol. 123. Academic Press, New York; Springer, Berlin (1965)

  32. Zabczyk, J.: Remarks on the algebraic Riccati equation in Hilbert space. Appl. Math. Optim. 2(3), 251–258 (1975/1976)

  33. Zabczyk, J.: Mathematical Control Theory: An Introduction. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Koshkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshkin, S. Positive semigroups and algebraic Riccati equations in Banach spaces. Positivity 20, 541–563 (2016). https://doi.org/10.1007/s11117-015-0371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-015-0371-3

Keywords

Mathematics Subject Classification

Navigation