Skip to main content
Log in

The analysis of dynamic travel mode choice: a heterogeneous hidden Markov approach

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Discrete choices are often analyzed statically. The limitations of static models become more obvious when employing them in more long-term travel demand forecasting. The research gap lies in a theoretical model which is dynamically formulated, and in readily available longitudinal data sources. To address this, a heterogeneous hidden Markov modeling approach (HMM) is proposed in this paper to model dynamic discrete choices. Both longitudinal and cross-sectional heterogeneity are considered. The approach is demonstrated on a travel mode choice application using ten-wave Puget Sound Transport Panel data coupled with some other supplementary data sources. Results indicate that travelers’ long-term life-cycle stages have an enduring impact when shifted to different mode choice states, wherein sensitivities to travel time and cost vary. Empirical results are put in line with static discrete choice models. The paper demonstrates that the family of HMM models provide the best fitting model. The dynamic model has superior explanatory power in fitting longitudinal data and thus shall provide more accurate estimates for planning and policy analyses. The proposed approach can be generalized to study other short/mid-term travel behavior. The estimated model can be easily calibrated and transferred for applications elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arentze, T.A., Timmermans, H.J.: A learning-based transportation oriented simulation system. Transp. Res. Part B 38(7), 613–633 (2004)

    Article  Google Scholar 

  • Ben-Akiva, M.: Planning and Action in a Model of Choice. Choice Modelling: The State-of-the-Art and the State-of-Practice. Emerald, Bingley (2010)

    Google Scholar 

  • Cherchi, E., Guevara, C.A.: A monte carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance-covariance matrix. Transp. Res. Part B 46(2), 321–332 (2012)

    Article  Google Scholar 

  • Choudhury, C.F., Ben-Akiva, M., Abou-Zeid, M.: Dynamic latent plan models. J. Choice Model. 3(2), 50–70 (2010)

    Article  Google Scholar 

  • Cirillo, C., Axhausen, K.W.: Mode Choice of Complex Tours: A Panel Analysis. ETH, Eidgenössische Technische Hochschule Zürich, Institut für Verkehrsplanung, Transporttechnik, Strassen-und Eisenbahnbau IVT (2002)

  • Cirillo, C., Axhausen, K.W.: Dynamic model of activity-type choice and scheduling. Transportation 37(1), 15–38 (2010)

    Article  Google Scholar 

  • Gill, J.: Bayesian Methods: A Social and Behavioral Sciences Approach. CRC Press, Boca Raton (2002)

    Google Scholar 

  • Goulias, K.G.: Longitudinal analysis of activity and travel pattern dynamics using generalized mixed markov latent class models. Transp. Res. Part B 33(8), 535–558 (1999)

    Article  Google Scholar 

  • Hess, S., Train, K.E.: Recovery of inter-and intra-personal heterogeneity using mixed logit models. Transp. Res. Part B 45(7), 973–990 (2011)

    Article  Google Scholar 

  • Kitamura, R.: Panel analysis in transportation planning: an overview. Transp. Res. Part A 24(6), 401–415 (1990)

    Article  Google Scholar 

  • Koppelman, F.S.: Predicting transit ridership in response to transit service changes. J. Transp. Eng. 109(4), 548–564 (1983)

    Article  Google Scholar 

  • McFadden, D., Train, K.: Mixed mnl models for discrete response. J. Appl. Econ. 15(5), 447–470 (2000)

    Article  Google Scholar 

  • Netzer, O., Lattin, J.M., Srinivasan, V.: A hidden markov model of customer relationship dynamics. Mark. Sci. 27(2), 185–204 (2008)

    Article  Google Scholar 

  • Pas, E.I., Koppelman, F.S.: An examination of the determinants of day-to-day variability in individuals’ urban travel behavior. Transportation 14(1), 3–20 (1987)

    Article  Google Scholar 

  • Paulssen, M., Temme, D., Vij, A., Walker, J.L.: Values, attitudes and travel behavior: a hierarchical latent variable mixed logit model of travel mode choice. Transportation 41, 1–16 (2013)

    Google Scholar 

  • Pendyala, R., Kitamura, R., Prasuna Reddy, D.: Application of an activity-based travel-demand model incorporating a rule-based algorithm. Environ. Plan. B 25, 753–772 (1998)

    Article  Google Scholar 

  • Pendyala, R., Pas, E.: Multi-day and multi-period data for travel demand analysis and modeling. Technical report (2000)

  • Pendyala, R. M.: Challenges and opportunities in advancing activity-based approaches for travel demand analysis. In: The Expanding Sphere of Travel Behavior Research: Selected Papers from the 11th Conference of the International Association for Travel Behavior Research: Selected Papers from the 11th Conference of the International Association for Travel Behavior Research, p. 303. Emerald Group Publishing

  • Pendyala, R.M., Kitamura, R., Kikuchi, A., Yamamoto, T., Fujii, S.: Florida activity mobility simulator: overview and preliminary validation results. Transp. Res. Rec. 1921(1), 123–130 (2005)

    Article  Google Scholar 

  • Ramadurai, G., Srinivasan, K.K.: Dynamics and variability in within-day mode choice decisions: role of state dependence, habit persistence, and unobserved heterogeneity. Transp. Res. Rec. 1977(1), 43–52 (2006)

    Article  Google Scholar 

  • Scott, S.L.: Bayesian methods for hidden Markov models. J. Am. Stat. Assoc. 97(457), 337–352 (2002)

    Article  Google Scholar 

  • Smith, T., Vounatsou, P.: Estimation of infection and recovery rates for highly polymorphic parasites when detectability is imperfect, using hidden markov models. Stat. Med. 22(10), 1709–1724 (2003)

    Article  Google Scholar 

  • Srinivasan, K.K., Bhargavi, P.: Longer-term changes in mode choice decisions in chennai: a comparison between cross-sectional and dynamic models. Transportation 34(3), 355–374 (2007)

    Article  Google Scholar 

  • Vij, A.: Incorporating the Influence of Latent Modal Preferences in Travel Demand Models. University of California Transportation, Berkley (2013)

    Google Scholar 

  • Vij, A., Carrel, A., Walker, J.L.: Incorporating the influence of latent modal preferences on travel mode choice behavior. Transp. Res. Part A 54, 164–178 (2013)

    Google Scholar 

  • Walker, J.L.: Extended Discrete Choice Models: Integrated Framework, Flexible Error Structures, and Latent Variables. Ph. D. thesis, Massachusetts Institute of Technology (2001)

  • Xiong, C., Zhang, L.: Positive model of departure time choice under road pricing and uncertainty. Transp. Res. Rec. 2345(1), 117–125 (2013)

    Article  Google Scholar 

  • Xiong, C., Zhang, L.: Dynamic travel mode searching and switching analysis considering hidden modal preference and behavioral decision processes. In: Transportation Research Board 93rd Annual Meeting, Number 14-4710

  • Xiong, C., Chen, X., He, X., Lin, X., Zhang, L.: Agent-based en-route diversion: Dynamic behavioral responses and network performance represented by macroscopic fundamental diagrams. Transp. Res. Part C. (2015). doi:10.1016/j.trc.2015.04.008

Download references

Acknowledgments

This research is financially supported by a National Science Foundation (NSF) CAREER Award, “Reliability as an Emergent Property of Transportation Networks”, and the U.S. Federal Highway Administration (FHWA) Exploratory Advanced Research Program. The authors are grateful to Neil Kilgren and Carol Naito affiliated with Puget Sound Regional Council for kindly provide Puget Sound Transportation Panel data and supplemented Puget Sound regional planning skimming matrices. The authors would like to thank Chen Dong affiliated with the Department of Mathematics, Univ. of Maryland, for his advice in addressing various hidden Markov model estimation issues. The opinions in this paper do not necessarily reflect the official views of NSF or FHWA. They assume no liability for the content or use of this paper. The authors are solely responsible for all statements in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenfeng Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Chen, X., He, X. et al. The analysis of dynamic travel mode choice: a heterogeneous hidden Markov approach. Transportation 42, 985–1002 (2015). https://doi.org/10.1007/s11116-015-9658-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-015-9658-2

Keywords

Navigation