Skip to main content
Log in

Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata

Photonic Network Communications Aims and scope Submit manuscript

Abstract

The use of modern quantum dot cellular automata (QCA) on the nanoscale gives better results than complementary metal–oxide–semiconductor (CMOS) technology such as diminution power consumption, augmentation clock frequency and device density enhancement. Thereupon, it becomes a substantial technology for forming whole varieties of memory. Random access memory (RAM) is an essential element of any computer set where the operating system, application programs and data can be kept to rapidly admonition via the main processor. The RAM is extremely swifter to read from and write into other kinds of the computer storages. There are some QCA cells for memory structures, wherein their specifications are used to design more optimized structures than CMOS. The offered techniques in the previous studies lead to extend in the consumption area, and the circuit complexity. So, in this paper a new single-bit QCA-based RAM is proposed to overcome these weaknesses. Ultimately, 4 × 1 RAM is designed by applying the single-bit memory. The operational authenticity of the offered layouts is demonstrated utilizing QCADesigner. Also, the QCAPro tool is utilized for calculating the dissipated energy of the circuit. The obtained results have indicated that the offered design has a smaller number of cells, low complexity and low wire crossing. Also, the wasted area has optimized based on the one-level loop-based structure. The suggested D-latch has 24 QCA cells, and the wasted area is 0.02 μm2. Each memory structure in RAM layout has the wasted area of 0.06 μm2 and 55 QCA cells. Finally, the obtained results have confirmed that the proposed design improves cell numbers and wasted area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ying, Z., Zhong, Y., DENG, P.-M.: On behavior of two-dimensional cellular automata with an exceptional rule under periodic boundary condition. J China Univ Posts Telecommun 17(1), 67–72 (2010)

    Article  Google Scholar 

  2. Cocorullo, G., et al.: Design of efficient QCA multiplexers. Int J Circuit Theory Appl 44(3), 602–615 (2016)

    Article  Google Scholar 

  3. Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Opt-Int J Light Electron Opt 127(20), 8576–8591 (2016)

    Article  Google Scholar 

  4. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24(2), 1–11 (2017)

    Google Scholar 

  5. Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf Process 13(9), 2127–2147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun Netw 16, 1–9 (2018)

    Article  MATH  Google Scholar 

  7. Sen, B., et al.: Design of reliable universal QCA logic in the presence of cell deposition defect. Int J Electron 104(8), 1285–1297 (2017)

    Article  Google Scholar 

  8. Sayedsalehi, S., et al.: Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf Sci 311, 86–101 (2015)

    Article  MathSciNet  Google Scholar 

  9. Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Opt-Int J Light Electron Opt 158, 243–256 (2018)

    Article  MATH  Google Scholar 

  10. Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: systematic literature review, classification and current trends. J Circuits Syst Comput 26, 1730004 (2017)

    Article  Google Scholar 

  11. Porod, W.: Quantum-dot devices and quantum-dot cellular automata. J Franklin Inst 334(5–6), 1147–1175 (1997)

    Article  MATH  Google Scholar 

  12. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J Appl Phys 75(3), 1818–1825 (1994)

    Article  Google Scholar 

  13. Sen, B., et al.: Towards the design of hybrid QCA tiles targeting high fault tolerance. J Compt Electron 15(2), 429–445 (2016)

    Article  MathSciNet  Google Scholar 

  14. Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Opt-Int J Light Electron Opt 130, 981–989 (2017)

    Article  Google Scholar 

  15. Hwang, C.S.: (Ba, Sr) TiO3 thin films for ultra large scale dynamic random access memory.: A review on the process integration. Mater Sci Eng B 56(2), 178–190 (1998)

    Article  Google Scholar 

  16. Kyun, K.-H., Moon, B.-S.: Semiconductor memory device having first and second memory architecture and memory system using the same. (2004), Google Patents

  17. Hsieh, W.-K., Lam, K.-T., Chang, S.-J.: Characteristics of tantalum-doped silicon oxide-based resistive random access memory. Mater Sci Semicond Process 27, 293–296 (2014)

    Article  Google Scholar 

  18. Huang, J., Momenzadeh, M., Lombardi, F.: Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. Integr VLSI J 40(4), 503–515 (2007)

    Article  Google Scholar 

  19. Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int J Theor Phys 56(9), 2990–3004 (2017)

    Article  MATH  Google Scholar 

  20. Taskin, B., Hong, B.: Improving line-based QCA memory cell design through dual phase clocking. IEEE Trans Very Large Scale Integr VLSI Syst 16(12), 1648–1656 (2008)

    Article  Google Scholar 

  21. Dehkordi, M.A., et al.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron J 42(5), 701–708 (2011)

    Article  MathSciNet  Google Scholar 

  22. Walus, K., et al.: RAM design using quantum-dot cellular automata. In: NanoTechnology Conference. (2003)

  23. Kianpour, M., Sabbaghi-Nadooshan, R.: A novel design and simulation of 16 bits RAM implementation in quantum-dot cellular automata (QCA). In: Electrotechnical Conference (MELECON), 2012 16th IEEE Mediterranean. (2012). IEEE

  24. Hashemi, S., Navi, K.: New robust QCA D flip flop and memory structures. Microelectron J 43(12), 929–940 (2012)

    Article  Google Scholar 

  25. Angizi, S., et al.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron J 46(1), 43–51 (2015)

    Article  Google Scholar 

  26. Kianpour, M., Sabbaghi-Nadooshan, R.: A Novel Quantum-Dot Cellular Automata {X} -bit × 32-bit SRAM. IEEE Trans Very Large Scale Integr VLSI Syst 24(3), 827–836 (2016)

    Article  MATH  Google Scholar 

  27. Walus, K., et al.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1), 26–31 (2004)

    Article  Google Scholar 

  28. Thiem, A.: Analyzing multilevel data with QCA: yet another straightforward procedure. Qual Quant 50(1), 121–128 (2016)

    Article  Google Scholar 

  29. Daliri, M.S., et al.: A 3D universal structure based on molecular-QCA and CNT technologies. J Mol Struct 1119, 86–95 (2016)

    Article  Google Scholar 

  30. Bishnoi, B., et al.: Ripple carry adder using five input majority gates. In: 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), (2012). IEEE

  31. Gaur, H.M., Singh, A.K., Ghanekar, U.: A new DFT methodology for k-CNOT reversible circuits and its implementation using quantum-dot cellular automata. Opt-Int J Light Electron Opt 127(22), 10593–10601 (2016)

    Article  Google Scholar 

  32. Anderson, N.G., Maalouli, F., Mestancik, J.: Quantifying the computational efficacy of nanocomputing channels. Nano Commun Netw 3(3), 139–150 (2012)

    Article  Google Scholar 

  33. Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J Comput Electron 4(1–2), 115–118 (2005)

    Article  Google Scholar 

  34. Andrecut, M., Ali, M.: Entanglement dynamics in quantum cellular automata. Phys Lett A 326(5), 328–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marx, A.: Crisp-set qualitative comparative analysis (csQCA) and model specification: Benchmarks for future csQCA applications. Int J Mult Res Approaches 4(2), 138–158 (2010)

    Article  Google Scholar 

  36. Thiem, A.: Unifying configurational comparative methods: generalized-set qualitative comparative analysis. Sociol Methods Res 43(2), 313–337 (2014)

    Article  MathSciNet  Google Scholar 

  37. Schneider, C.Q., Wagemann, C.: Standards of good practice in qualitative comparative analysis (QCA) and fuzzy-sets. Comp Sociol 9(3), 397–418 (2010)

    Article  Google Scholar 

  38. Ragin, C.C., Strand, S.I.: Using qualitative comparative analysis to study causal order: Comment on Caren and Panofsky (2005). Sociol Methods Res 36(4), 431–441 (2008)

    Article  MathSciNet  Google Scholar 

  39. Dysart, T.J.: Implementing a Generic three State Coherence Vector Model for QCA. White paper, pp. 1–12 (2009)

  40. Sarkar, T.: Design of D flip-flip using nano-technology based quantum cellular automata. Int J Soft Comput Eng (IJSCE) 3(4), 56–60 (2013)

    Google Scholar 

  41. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J Appl Phys 91(2), 823–831 (2002)

    Article  Google Scholar 

  42. Bahar, A.N., et al.: Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata. Data in brief 10, 557 (2017)

    Article  Google Scholar 

  43. Liu, W., et al.: Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans Nanotechnol 11(6), 1239–1251 (2012)

    Article  Google Scholar 

  44. Shamsabadi, A.S., et al.: Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J Syst Architect 55(3), 180–187 (2009)

    Article  Google Scholar 

  45. Angizi, S., et al.: Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst 39(7), 512–520 (2015)

    Article  Google Scholar 

  46. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans Nanotechnol 8(1), 116–127 (2009)

    Article  Google Scholar 

  47. Blair, E.P., Yost, E., Lent, C.S.: Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J Comput Electron 9(1), 49–55 (2010)

    Article  Google Scholar 

  48. Sheikhfaal, S., et al.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron J 46(6), 462–471 (2015)

    Article  Google Scholar 

  49. Srivastava, S., et al.: QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS). (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jafari Navimipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fam, S.R., Navimipour, N.J. Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw Commun 37, 120–130 (2019). https://doi.org/10.1007/s11107-018-0801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0801-9

Keywords

Navigation