Skip to main content
Log in

Structural Differences of BaTiO3 Ceramics Modified by Ultrasonic and Mechanochemical Methods

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Barium titanate powders were synthesized by the modified solid-state method with ultrasonic (5 min) and mechanochemical (12 h) deagglomeration methods. The structure of the samples was verified using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffractometer (XRD). Scanning electron microscopy (SEM) analysis of the powders showed that using ultrasonic deagglomeration significantly decreased the particle size with perfect homogeneity in the shortest time. The particle size of the powders was calculated as 44.7 nm and 80.4 nm for ultrasonic and mechanochemical deagglomeration, respectively. The sintered pellet by ultrasonic method had no abnormal grain growth, and the grain sizes were between 10 and 30 μm. The pellet by mechanochemical method had an abnormal grain growth, and the grain sizes were between 10 and 100 μm. The results showed that ultrasonication remarkably improved the structure of the samples in the shortest time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. J. Kim, “Synthesis of porous (Ba, Sr)TiO3 ceramics and PTCR characteristics,” Mater. Chem. Phys., 78, No. 1, 154–159 (2002); http://www.sciencedirect.com/science/article/pii/S025405840200295X.

    Article  CAS  Google Scholar 

  2. M. Yuasa, T. Nagano, N. Tachibana, T. Kida, and K. Shimanoe, “Catalytic combustion-type hydrogen sensor using BaTiO3-based PTC Thermistor,” J. Am. Ceram. Soc., 96, No. 6, 1789–1794 (2013); doi:https://doi.org/10.1111/jace.12217.

    Article  CAS  Google Scholar 

  3. B. Guigues, J. Guillan, E. Defaÿ, P. Garrec, D. Wolozan, B. André, F. Laugier, R. Pantel, X. Gagnard, and M. Aïd, “SrTiO3/BaTiO3 multilayers thin films for integrated tunable capacitors applications,” J. Eur. Ceram. Soc., 27, Nos. 13–15, 3851–3854 (2007); doi:https://doi.org/10.1016/j.jeurceramsoc.2007.02.043.

    Article  CAS  Google Scholar 

  4. T.S. Chen, V. Balu, S. Katakam, J.H. Lee, and J.C. Lee, “Effects of Ir electrodes on barium strontium titanate thin-film capacitors for high-density memory application,” IEEE Trans. Electron Devices, 46, No. 12, 2304–2310 (1999). doi:https://doi.org/10.1109/16.808068.

    Article  CAS  Google Scholar 

  5. N.V. Dang, N.T. Dung, P.T. Phong, and I.-J. Lee, “Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics,” Physica B: Condensed Matter, 457, 103–107 (2015). doi:https://doi.org/10.1016/j.physb.2014.09.046.

  6. C. Pecharroman, F. Esteban-Betegón, J.F. Bartolome, S. López-Esteban, and J.S. Moya, “New percolative BaTiO3 ± Ni composites with a high and frequency-independent dielectric constant (εr=80000), Adv. Mater., 13, No. 20, 1541–1544 (2001); doi:https://doi.org/10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X.

    Article  CAS  Google Scholar 

  7. J.Q. Qi, T. Peng, Y.M. Hu, L. Sun, Y. Wang, W.P. Chen, L.T. Li, C.W. Nan, and H.L.W. Chan, “Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature,” Nanoscale Research Letter, 6, 466, (2011); doi:https://doi.org/10.1186/1556-276X-6-466.

  8. M.M. Vijatovic Petrovic, J.D. Bobic, H. Uršic, J. Banys, and B.D. Stojanovic, “The electrical properties of chemically obtained barium titanate improved by attrition milling,” J. Sol-Gel Sci. Technol. 67, No. 2, 267–272 (2013); doi:https://doi.org/10.1007/s10971-013-3075-9.

    Article  CAS  Google Scholar 

  9. O.B. Miloševic, M.K. Mirkovic, and D.P. Uskokovic, “Characteristics and formation mechanism of BaTiO3 powders prepared by twin fluid and ultrasonic spray-pyrolysis methods,” J. Am. Ceram. Soc., 79, No. 6, 1720–1722. (1996); http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1996.tb08794.x/abstract.

    Article  Google Scholar 

  10. U. Manzoor and D. Kim, “Synthesis of nano-sized barium titanate powder by solid-state reaction between barium carbonate and titania,” J. Mater. Sci. Technol., 23, No. 5, 655–658 (2007).

    CAS  Google Scholar 

  11. S.M. Antao and I. Hassan, “BaCO3: high-temperature crystal structures and the Pmcn→R3m phase transition at 811°C,” Phys. Chem. Miner., 34, No. 8, 573–580 (2007); doi:https://doi.org/10.1007/s00269-007-0172-8.

    Article  CAS  Google Scholar 

  12. D. Koziej, A. Lauria, and M. Niederberger, “25th Anniversary article: Metal oxide particles in materials science: Addressing all length scales,” Adv. Mater., 26, No. 2, 235–257(2014). doi:https://doi.org/10.1002/adma.201303161.

    Article  CAS  Google Scholar 

  13. J.C. Mutin, and J.C. Niepce, “About stoichiometry of polycrystalline BaTiO3 synthesized by solid-solid reaction,” J. Mater. Sci. Lett., 3, No. 7, 591–592 (1984); doi:https://doi.org/10.1007/BF00719620.

    Article  CAS  Google Scholar 

  14. S. Markovic, M. Miljkovic, C. Jovalekic, S. Mentus, and D. Uskokovic, “Densification, microstructure, and electrical properties of BaTiO3 (BT) ceramics prepared from ultrasonically de-agglomerated BT powders,” Mater. Manuf. Processes. 24, Nos. 10-11, 1114–1123 (2009); doi:https://doi.org/10.1080/10426910903031750.

    Article  CAS  Google Scholar 

  15. D. Kosanovic, N. Obradovic, J. Živojinovic, A. Maricic, V.P. Pavlovic, V.B. Pavlovic, and M.M. Ristic, “The influence of mechanical activation on sintering process of BaCO3–SrCO3–TiO2 system,” Sci. Sinter., 44, No. 3, 271–280 (2012); doi:https://doi.org/10.2298/SOS1203271K.

    Article  CAS  Google Scholar 

  16. H.Z. Akbas, Z. Aydin, O. Yilmaz, and S. Turgut, “Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics,” Ultrason. Sonochem., 34, 873–880 (2017); doi:https://doi.org/10.1016/j.ultsonch.2016.07.027.

  17. H.Z. Akbas, Z. Aydin, I.H. Karahan, T. Dilsizoglu, and S. Turgut, “Effect of probe diameter on structure and morphological properties of TiO2 and ZrO2 powders in ultrasonication process,” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 18, No.54, 304–316 (2016)

  18. J.-J. Gan, and W.-C.J. Wei, “Synthesis and dielectric properties of Niobia coating on BaTiO3,” Int. J. Appl. Ceram. Technolology, 6, No. 6, 661–670, (2009); doi:https://doi.org/10.1111/j.1744-7402.2008.02301.x.

  19. M. Ashokkumar, “The characterization of acoustic cavitation bubbles – An overview,” Ultrason. Sonochem., 18, No. 4, 864–872 (2011); http://www.sciencedirect.com/science/article/pii/S1350417710002312.

    Article  CAS  Google Scholar 

  20. M.A. Alavi, and A. Morsali, “Syntheses of BaCO3 nanostructures by ultrasonic method”, Ultrason. Sonochem., 15, No. 5, 833–838 (2008); http://www.sciencedirect.com/science/article/pii/S1350417708000321.

    Article  CAS  Google Scholar 

  21. M. Mousavi-Kamazani, M. Salavati-Niasari, and H. Emadi, “Preparation of stochiometric CuInS2 nanostructures by ultrasonic method”, Micro & Nano Letters, 7, No. 9, 896–900 (2012); doi:https://doi.org/10.1049/mnl.2012.0393.

    Article  CAS  Google Scholar 

  22. Infrared spectroscopy absorption table, last updated 2014; http://chemwiki.ucdavis.edu/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table(accessedMarch17,2016).

  23. M. Trivedi, G. Nayak, S. Patil, R. Tallapragada, and O. Latiyal, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Ind. Eng. Manage., 4, No. 3, 166 (2015); doi:https://doi.org/10.4172/2169-0316.1000166.

  24. R. Ashiri, “Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process,” Vib. Spectrosc., 66, No. 1, 24–29 (2013). doi:https://doi.org/10.1016/j.vibspec.2013.02.001.

    Article  CAS  Google Scholar 

  25. T. Yamamoto, K. Urabe, and H. Banno, “BaTiO3 particle-size dependence of ferroelectricity in BaTiO3/Polymer composites,” Japanese J. Appl. Phys., 32, No. 9B, 4272–4276 (1993); doi:https://doi.org/10.1143/JJAP.32.4272.

    Article  CAS  Google Scholar 

  26. W.-S. Cho and E. Hamada, “Synthesis of ultrafine BaTiO3 particles from polymeric precursor: their structure and surface property,” Journal of Alloys and Compounds, 266, Nos. 1–2, 118–122 (1998); doi:https://doi.org/10.1016/S0925-8388(97)00446-5.

  27. V.P. Pavlovic, M.V. Nikolic, V.B. Pavlovic, N. Labus, L. Živkovic, and B.D. Stojanovic, “Correlation between densification rate and microstructure evolution of mechanically activated BaTiO3,” Ferroelectrics, 319, No. 1, 75–85 (2005); doi:https://doi.org/10.1080/00150190590965451.

    Article  CAS  Google Scholar 

  28. S. Markovic, M. Mitric, G. Starcevic, and D. Uskokovic, “Ultrasonic de-agglomeration of barium titanate powder,” Ultrason. Sonochem., 15, No. 1, 16–20 (2008). doi:https://doi.org/10.1016/j.ultsonch.2007.07.008.

    Article  CAS  Google Scholar 

  29. B.D. Stojanovic, A.Z. Simoes, C.O. Paiva-Santos, C. Jovalekic, V.V. Mitic, and J.A. Varela, “Mechanochemical synthesis of barium titanate,” J. Eur. Ceram. Soc., 25, No. 12, 1985–1989 (2005); doi:https://doi.org/10.1016/j.jeurceramsoc.2005.03.003.

    Article  CAS  Google Scholar 

  30. K.S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K.J. Kolbeck, W.B. McNamara III, M.M. Mdleleni, and M. Wong, “Acoustic cavitation and its chemical consequences,” Philos. Trans. R. Soc. Lond., Ser. A., 357, No. 1751, 335–353 (1999); doi:https://doi.org/10.1098/rsta.1999.0330.

    Article  CAS  Google Scholar 

  31. J.M.F. Ferreira, S.M. Olhero, and A. Kaushal, “Is the ubiquitous presence of barium carbonate responsible for the poor aqueous processing ability of barium titanate?” J. Eur. Ceram. Soc., 33, Nos. 13-14, 2509–2517 (2013); doi:https://doi.org/10.1016/j.jeurceramsoc.2013.05.010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Zehra Akbas.

Additional information

Published in Poroshkova Metallurgiya, Vol. 57, Nos. 7–8 (522), pp. 150–159, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, Z., Turgut, S. & Akbas, H.Z. Structural Differences of BaTiO3 Ceramics Modified by Ultrasonic and Mechanochemical Methods. Powder Metall Met Ceram 57, 490–497 (2018). https://doi.org/10.1007/s11106-018-0008-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-018-0008-8

Keywords

Navigation