Skip to main content

Advertisement

Log in

Rapidly Solidified High-Temperature Aluminum Alloys. II. Mechanical Properties

  • SINTERED METALS AND ALLOYS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The strength and plasticity of a series of rapidly solidified high-temperature aluminum alloys determined in tensile tests are analyzed over a wide temperature range. The properties of the following systems are studied: Al–Fe–Ce, Al–Fe–Cr–(TM), Al–Cr–Zr(Mn), and Al–Fe–V(Mo)–Si. The effect of the doping content and rapid solidification technique on strength is examined. The best samples of green products show 550–600 MPa strength at room temperature and at least 200–250 MPa at 300°C. The strength of Al–Fe–Cr–(TM) alloys with a high volume content of quasicrystals is approximately 100 MPa higher at 20 and 300°C, while their elongation is 50 to 67% lower than the corresponding characteristics of other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. V. Krainikov and O. D. Neikov, “Rapidly solidified high-temperature aluminum alloys. I. Structure,” Powder Metall. Met. Ceram., 51, No. 7–8, 399–411 (2012).

    Article  CAS  Google Scholar 

  2. G. I. Éskin, “Nondendritic solidification of light metals,” Tekhnol. Legk. Met., No. 2, 17–25 (2000).

    Google Scholar 

  3. M. Furuya and T. Arai, “Innovative ultra rapid cooling and atomizing process utilizing vapor explosion and production of new functional powders,” in: Proc. World Congress, Vol. 1, Florence (2010), pp. 33–38.

  4. O. D. Neikov, S. S. Naboychenko, and G. Dowson (eds.), “Advanced aluminum alloy powders,” in: Handbook of Non-Ferrous Metal Powders, Elsevier Publishers, London–New York–Amsterdam (2009), pp. 284–313.

  5. B. I. Bondarev and Yu. V. Shmakov, Production of Rapidly Solidified Aluminum Alloys [in Russian], VILS, Moscow (1997), p. 231.

    Google Scholar 

  6. O. D. Neikov, “Nonferrous powder production technologies,” Int. Powder Metall. Directory, 13, 31–44 (2008–2009).

    Google Scholar 

  7. K. M. McHugh, M. Kevin, J.-P. Delplanque, et al., “Spray rolling aluminum alloy strip,” Mater. Sci. Eng. (A), 383, No. 1, 96–106 (2004).

    Article  Google Scholar 

  8. O. D. Neikov, O. V. Krainikov, Yu. V. Milman, et al., Method of Producing Semifinished Products from Aluminum Alloys [in Ukrainian], Ukrainian Patent No. 06588, Bulletin No. 9 (2005).

  9. G. J. Hildenman, “Aluminum powder alloys: An overview,” in: New Light Alloys, AGARD Lecture Series, Advisory Group for Aerospace Research and Development, No. 174, NATO, 5.1–5.25 (1990).

  10. J. C. Foley, W. H. Jr. Hunt, D. J. Barnard, and F. C. Laabs, “Simple powder metallurgy processing of Al–8Fe–4Ce alloys,” in: V. Arnhold, C.-L. Chu, W. Jandeska Jr., and H. Sanderow (eds.), Powder Metallurgy and Particulate Materials, Vol. 1, Metal Powder Industries Federation, Princeton, New Jersey (2002), pp. 103–114.

  11. G. Champier, “Physical metallurgy of aluminum powder alloys,” in: New Light Alloys, AGARD Lecture Series, No. 174, Advisory Group for Aerospace Research and Development, NATO (1990), pp. 6.1–6.21.

  12. J. Lankford, D. L. Davidson, K. S. Chan, et al., Study of the Influence of Metallurgical Factors on Fatigue and Fracture of Aerospace Structural Materials. AFOSR Final Report, Southwest Research Institute, San Antonio, Houston, USA (1989), p. 29.

    Google Scholar 

  13. M. Kubota, M. Sugamata, and J. Kaneko, “P/M materials of rapidly solidified Al–Ce–X ternary alloys,” J. Jpn. Inst. Light Met., 43, No. 10, 509–515 (1993).

    Article  CAS  Google Scholar 

  14. O. D. Neikov, Yu. V. Milman, A. I. Sirko, et al., “Al–Fe–Ce alloys based on water-atomized powders for high-temperature applications,” Powder Metall. Met. Ceram., 46, No. 9–10, 429–435 (2007).

    Article  CAS  Google Scholar 

  15. O. D. Neikov, Yu. V. Milman, A. I. Sirko, et al., “Elevated temperature aluminum alloys produced by water atomization,” Mater. Sci. Eng. (A), 477, No. 1–2, 80–85 (2008).

    Article  Google Scholar 

  16. J. Q. Guo and N. S. Kazama, “Mechanical properties of rapidly solidified Al–Ti–Fe, Al–Cu–Fe, and Al–Fe–Cu–Ti based alloys extruded from their atomized powders,” Mater. Sci. Eng. (A), 232, 177–182 (1997).

    Article  Google Scholar 

  17. Y. Nagaishi, M. Yamasaki, and Y. Kawamura, “Effect of process atmosphere on the mechanical properties of rapidly solidified powder metallurgy Al–Ti–Fe–Cr alloys,” Mater. Sci. Eng. (A), 449–451, 794–798 (2007).

    Article  Google Scholar 

  18. M. Yamasaki, Y. Nagaishi, and Y. Kawamura, “Inhibition of Al grain coarsening by quasicrystalline icosahedral phase in the rapidly solidified powder metallurgy Al–Fe–Ti–Cr alloy,” Scripta Mater., 56, 785–788 (2007).

    Article  CAS  Google Scholar 

  19. Y. Kawamura, H.-B. Liu, A. Inoue, and T. Masumoto, “Rapidly solidified powder metallurgy Al–Ti–Fe alloys,” Scripta Mater., 37, No. 2, 205–210 (1997).

    Article  CAS  Google Scholar 

  20. Y. Kawamura, A. Inoue, M. Takagi, et al., “Rapidly solidified powder metallurgy of Al–Ti–Fe–X alloys,” Scripta Mater., 40, No. 10, 1131–1137 (1999).

    Article  CAS  Google Scholar 

  21. D. Vojtěch, A. Michalcová, J. Pilch, et al., “Structural characteristics and thermal stability of Al–5.7Cr–2.5Fe–1.3Ti alloy produced by powder metallurgy,” J. Alloys Compd., 475, 151–156 (2009).

    Article  Google Scholar 

  22. I. Todd, Z. Chlup, J. G. O’Dwyer, et al., “The influence of processing variables on the structure and mechanical properties of nano-quasicrystalline reinforced aluminum alloys,” Mater. Sci. Eng. (A), 375–377, 1235–1238 (2004).

    Article  Google Scholar 

  23. H. M. Kimura, K. Sasamori, and A. Inoue, “Formation, microstructure and mechanical properties of Al–Fe base quasicrystalline alloys,” Mater. Sci. Eng. (A), 294–296, 168–172 (2000).

    Article  Google Scholar 

  24. M. Galano, F. Audebert, A. Garcia-Escorial, et al., “Nanoquasicrystalline Al–Fe–Cr-based alloys. II. Mechanical properties,” Acta Mater., 57, 5120–5130 (2009).

    Article  CAS  Google Scholar 

  25. V. I. Dobatkin, V. I. Evlagin, and V. M. Fedorov, Rapidly Solidified Aluminum Alloys [in Russian], VILS, Moscow (1995), p. 335.

    Google Scholar 

  26. C. Banjongprasert, S. C. Hogg, E. Liotti, et al., “Spray forming of bulk nanostructured Al–Fe–Cr–Ti,” in: U. Fritsching, L. Maedler, and V. Uhlenwinkel (eds.), Proc. 4rd Int. Conf. on Spray Deposition and Melt Atomization (September, 7–9, 2009, Bremen, Germany), Bremen (2009), pp. 1–10.

  27. C. Banjongprasert, S. C. Hogg, E. Liotti, et al., “Spray forming of bulk ultrafine-grained Al–Fe–Cr–Ti,” Metal. Mater. Trans. (A), 41, No. 12, 3208–3215 (2010).

    Article  CAS  Google Scholar 

  28. Yu. V. Milman, A. I. Sirko, M. O. Iefimov, et al., “High strength aluminum alloys reinforced by nanosize quasicrystalline particles for elevated temperature application,” High Temp. Mater. Proc., 25, No. 1–2, 19–30 (2006).

    CAS  Google Scholar 

  29. O. D. Neikov, Yu. V. Milman, D. B. Miracle, et al., “Properties of rapidly solidified powder aluminum alloys for elevated temperatures produced by water atomization,” in: V. Arnhold, C.-L. Chu, W. Jandeska Jr., and H. Sanderow (eds.), Advances in Powder Metallurgy and Particulate Materials, Vol. 7, Metal Powder Industries Federation, Princeton, New Jersey (2002), 14–27.

    Google Scholar 

  30. R. Yearim and D. Shechtman, “The structure of rapidly solidified Al–Fe–Cr Alloys,” Metal. Trans. (A), 13, No. 11, 1891–1898 (1982).

    Article  CAS  Google Scholar 

  31. A. Michalcová, D. Vojtěch, P. Novak, et al., “Structure of rapidly solidified Al–Fe–Cr–Ce alloy,” Key Eng. Mater., 465, 1999–2002 (2011).

    Article  Google Scholar 

  32. D. Vojtěch, J. Verner, and J. Šerák, “Properties of thermally stable PM Al–Cr based alloy,” Mater. Sci. Eng. (A), 458, 371–380 (2007).

    Article  Google Scholar 

  33. P. Y. Li, H. J. Yu, S. C. Chai, and Y. R. Li, “Microstructure and properties of rapidly solidified powder metallurgy Al–Fe–Mo–Si alloys,” Scripta Mater., 49, 819–824 (2003).

    Article  CAS  Google Scholar 

  34. Y. Wang, G. W. Lorimer, and F. R. Sale, “Microstructural development during consolidation of rapidly solidified Al–Fe–V–Si powder by VHP, extrusion and rolling,” Scripta Met. Mater., 31, No. 10, 1337–1342 (1994).

    Article  CAS  Google Scholar 

  35. Y. Xiao, S. Li, W. Li, and R. Wang, “Microstructure and mechanical properties of rapidly solidified Al–Fe–Cr–Zr–V–Si alloy and their thermal stability,” Trans. Nonferrous Met. Soc. China, 8, No. 3, 477–480 (1998).

    CAS  Google Scholar 

  36. H. Hata, K. Kajinara, T. Takagi, et al., “Spray forming of Al alloy of high temperature strength,” in: U. Fritsching, V. Uhlenwinkel, K. Bauckhage, and H.W. Zoch (eds.), in: Proc. 3rd Int. Conf. on Spray Deposition and Melt Atomization (September 4–6, 2006, Bremen, Germany), Bremen (2006), pp. 1–10.

  37. F. Wang, B. Zhu, B. Xiong, et al., “An investigation on the microstructure and mechanical properties of spray-deposited Al–8.5Fe–1.1V–1.9Si alloy,” J. Mater. Process. Technol., 183, 386–389 (2007).

    Article  CAS  Google Scholar 

  38. Lu Bin, Yi Dan-qing, Li Wen-xian, Yu Zhi-ming, and Zhou Lin, “Thermal stability and mutispray deposition heat resistant Al–Ve–V–Si alloy,” Trans. Nonferrous Met. Soc. China, 12, No. 2, 273–276 (2002).

    Google Scholar 

  39. S. Mitra, “Elevated temperature mechanical properties of a rapidly solidified Al–Fe–V–Si alloy,” Scripta Met. Mater., 27, 521–526 (1992).

    Article  Google Scholar 

  40. P. Liu and G. L. Dunlop, “Microstructural characterization of rapidly solidified A1–Mn–Cr alloys,” Mater. Sci. Eng. (A), 134, 1182–1187 (1991).

    Article  Google Scholar 

  41. J. Liu, U. Backmark, L. Arnberg, et al., “Hot extrusion and mechanical properties of rapidly solidified Al and Cu alloy powders,” Mater. Sci. Eng. (A), 98, 419–423 (1988).

    Article  CAS  Google Scholar 

  42. V. I. Elagin, “Ways of developing high-strength and oxidation-resistant structural aluminum alloys in the 21st century,” Metalloved. Term. Obrab. Mater., No. 9, 3–11 (2007).

    Google Scholar 

  43. A. V. Krainikov, “Effect of the structure and chemical inhomogeneity of rapidly solidified powders on the properties of aluminum alloys,” Powder Metall. Met. Ceram., 49, No. 7–8, 397–409 (2010).

    Article  CAS  Google Scholar 

  44. H. Jones, “Gas-atomized aluminum alloy powders and their products: an update 1996–2001,” Mater. Sc. Eng. (A), 375–377, 104–111 (2004).

    Article  Google Scholar 

  45. A. Inoue, “Amorphous, nanoquasicrystalline, and nanocrystalline alloys in Al-based systems,” Prog. Mater. Sci., 43, 365–520 (1998).

    Article  CAS  Google Scholar 

  46. D. Vojtěch, A. Michalcová, J. Čížek, et al., “Microstructure characterization of rapidly solidified Al–Fe–Cr–Ce alloy by positron annihilation spectroscopy,” J. Alloys Compd., 509, No. 7, 3211–3218 (2011).

    Google Scholar 

  47. K. B. Kim, W. Xu, M. Tomut, et al., “Formation of icosahedral phase in an Al93Fe3Cr2Ti2 bulk alloy,” J. Alloys Compd., 436, L1–L4 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. D. Neikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krainikov, A.V., Neikov, O.D. Rapidly Solidified High-Temperature Aluminum Alloys. II. Mechanical Properties. Powder Metall Met Ceram 51, 554–565 (2013). https://doi.org/10.1007/s11106-013-9467-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-013-9467-0

Keywords

Navigation