Skip to main content
Log in

Overexpression of the Monodehydroascorbate Reductase Gene from Non-heading Chinese Cabbage Reduces Ascorbate Level and Growth in Transgenic Tobacco

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

l-Ascorbic acid is an important antioxidant in both animals and plants. Monodehydroascorbate reductase is an enzyme involved in regulating the l-ascorbic acid level in plants. Here, we report the cloning of the reductase gene from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) and negative regulation of l-ascorbic acid and dehydroascorbate levels in transgenic tobacco plants expressing the gene under the control of the 35S promoter. The transgenic plants had reduced growth. The transgenic plants had changed the expression of the genes in the d-mannose/l-galactose pathway, degradation and recycling pathway and the activity of enzymes involved in degradation (ascorbate oxidase and ascorbate peroxidase) or recycling of ascorbic acid (dehydroascorbate reductase and glutathione reductase).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3a–d
Fig. 4a–e
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Badejo AA, Tanaka N, Esaka M (2008) Analysis of GDP-d-mannose pyrophosphorylase gene promoter from acerola (Malpighiaglabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant Cell Physiol 49:126–132

    Article  CAS  PubMed  Google Scholar 

  • Badejo AA, Eltelib HA, Fukunaga K, Fujikawa Y, Esaka M (2009) Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighiaglabra) phosphomannomutase gene. Plant Cell Physiol 50:423–428

    Article  CAS  PubMed  Google Scholar 

  • Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-l-galactoseguanyl transferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development and function. Plant Physiol 142:775–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbicacid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96:4198–4203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Rus E, Amaya I, Valpuesta V (2012) The challenge of increasing vitamin C content in plant foods. Biotechnol J 7:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Davey MW, Montagu MV, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Eltelib HA, Fujikawa Y, Esaka M (2012) Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S Afr J Bot 78:295–301

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443

    Article  CAS  PubMed  Google Scholar 

  • Gest N, Garchery C, Gautier H, Jiménez A, Stevens R (2013) Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol. Plant Biotechnol J 11:344–354

    Article  CAS  PubMed  Google Scholar 

  • Grantz AA, Brummell DA, Bennett AB (1995) Ascorbate free radical reductase mRNA levels are induced by wounding. Plant Physiol 108:411–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haroldsen VM, Chi-Ham CL, Kulkarni S, Lorence A, Bennett AB (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol Biochem 49:1244–1249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbateat the plant plasma membrane. Trends Plant Sci 5:263–267

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholta D, Rpgers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed Central  PubMed  Google Scholar 

  • Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355

    Article  CAS  Google Scholar 

  • Kampfenkel K, Vanmontagu M, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167

    Article  CAS  PubMed  Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104:9534–9539

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Schellhorn HE (2007) New developments and novel therapeutic perspectives for vitamin C. J Nutr 137:2171–2184

    CAS  PubMed  Google Scholar 

  • Li Y, Song YP, Shi GJ, Wang JJ, Hou XL (2009) Response of antioxidant activity to excess copper in two cultivars of Brassica campestris ssp. chinensis Makino. Acta Physiol Plant 31:155–162

    Article  Google Scholar 

  • Linster CL, Clarke SG (2008) l-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13:567–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mandl J, Szarka A, Bánhegyi G (2009) Vitamin C: update on physiology and pharmacology. Br J Pharmacol 157:1097–1110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin A, Shi Q, Yu X (2011) Ascorbic acid contents in transgenic potatoplants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38:1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Chen ZW, Duan WK, Song XM, Liu TK, Wang JJ, Hou XL, Li Y (2013) Comparis on of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars. Plant Physiol Biochem 73:229–236

    Article  CAS  PubMed  Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    CAS  PubMed  Google Scholar 

  • Smirnoff N (2003) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Article  Google Scholar 

  • Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokunaga T, Miyahara K, Tabata K, Esaka M (2005) Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for l-galactono-1,4-lactone dehydrogenase. Planta 220:854–863

    Article  CAS  PubMed  Google Scholar 

  • Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang XY, Xie JX, Wang FF, Zhong J, Liu YZ, Li GH, Peng SA (2011) Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp. J Plant Physiol 168:2196–2205

    Article  CAS  PubMed  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang WY, Lorence A, Gruszewski HA, Chevone BI, Nessler CL (2009) AMR1, an Arabidopsis gene that coordinately and negatively regulates the Mannose/l-Galactose ascorbic acid biosynthetic pathway. Plant Physiol 150:942–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Basic Research Program of China (973 Program, grant no. 2009CB119001), the Fundamental Research Funds for the Central Universities of China (grant no. KYZ201111), and the National High Technology Research and Development Program of China (863 Program, grant no. 2012AA100101, 2012AA100102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Fig. 1

Identification of BcMDHAR gene in transgenic plants by PCR. 16 Wild type, 715 transgenic plants, M DL2000 marker. (JPEG 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Duan, W., Chen, Z. et al. Overexpression of the Monodehydroascorbate Reductase Gene from Non-heading Chinese Cabbage Reduces Ascorbate Level and Growth in Transgenic Tobacco. Plant Mol Biol Rep 33, 881–892 (2015). https://doi.org/10.1007/s11105-014-0797-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0797-y

Keywords

Navigation