Skip to main content

Advertisement

Log in

The Amaranthin-Like Lectin (LuALL) Genes of Flax: a Unique Gene Family with Members Inducible by Defence Hormones

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Lectins are proteins that bind specifically to carbohydrates and are active in plant defence and many other physiological processes. The sequencing of the flax (Linum usitatissimum) genome showed that it was unusually rich in genes predicted to encode one or more agglutinin domains (Pfam PF07468). This domain is characteristic of the amaranthin-type lectin family, and thus the 19 predicted flax genes that contained this domain were named L. usitatissimum amaranthin-like lectins (LuALLs). Six LuALLs were predicted to contain a lectin domain and also either a Bet v I domain or an aerolysin domain, both of which have also been found in defence-related proteins. To investigate the function of these genes, transcript expression of 19 LuALLs was measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Most LuALLs were expressed throughout vegetative and floral tissues, while two were highly enriched in late-stage embryos, and two others were detected exclusively in stems or cotyledons. Transcripts of six LuALLs increased as much as 3,000-fold in seedlings treated with methyl jasmonate, and six LuALLs were induced by salicylic acid, although only one gene was common to both groups of hormone-responsive genes. These studies form a basis for further research on evolution of plant defences, with potential application in enhancing crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee R, Das K, Ravishankar R, Suguna K, Surolia A, Vijayan M (1996) Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J Mol Biol 259(2):281–296

    Article  CAS  PubMed  Google Scholar 

  • Buckley JT, Halasa LN, Lund KD, Macintyre S (1981) Purification and some properties of the hemolytic toxin aerolysin. Can J Biochem 59(6):430–435

    Article  CAS  PubMed  Google Scholar 

  • Caramelo JJ, Parodi AJ (2008) Getting in and out from calnexin/calreticulin cycles. J Biol Chem 283(16):10221–10225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chauhan JS, Rao A, Raghava GPS (2013) In silico platform for prediction of N-, O- and C-Glycosites in eukaryotic protein sequences. Plos One 8(6):e67008

  • Day A, Fenart S, Neutelings G, Hawkins S, Rolando C, Tokarski C (2013) Identification of cell wall proteins in the flax (Linum usitatissimum) stem. Proteomics 13(5):812–825

    Article  CAS  PubMed  Google Scholar 

  • De Hoff PL, Brill LM, Hirsch AM (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282(1):1–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757–766

    Article  CAS  PubMed  Google Scholar 

  • Fragniere C, Serrano M, Abou-Mansour E, Metraux JP, L’Haridon F (2011) Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett 585(12):1847–1852

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In the proteomics protocols handbook. Walker JM (ed). Humana Press, p 571–607

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4):378–379

    Article  CAS  PubMed  Google Scholar 

  • Huis R, Hawkins S, Neutelings G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). Bmc Plant Biol 10:71

  • Jiang SY, Ma ZG, Ramachandran S (2010) Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol 10:79

  • Krishnaswamy SS, Srivastava S, Mohammadi M, Rahman MH, Deyholos MK, Kav NNV (2008) Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana. BMC Plant Biol 8:91

  • Lannoo N, Van Damme EJM (2010) Nucleocytoplasmic plant lectins. Biochim Biophys Acta Gen Subj 1800(2):190–201

    Article  CAS  Google Scholar 

  • Levchuk AN, Voitovich EN, Lyakh VA (2013) Lectins of oil-seed flax plants exposed to abiotic stress. Russ J Plant Physiol 60(1):77–83

    Article  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68(1–3):3–13

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol 325(1):123–133

    Article  CAS  PubMed  Google Scholar 

  • Mitaku S, Hirokawa T (1999) Physicochemical factors for discriminating between soluble and membrane proteins: hydrophobicity of helical segments and protein length. Protein Eng 12(11):953–957

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Parker MW, van der Goot FG, Buckley JT (1996) Aerolysin—the ins and outs of a model channel-forming toxin. Mol Microbiol 19(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109(2):347–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J et al (2012) The Pfam protein families database. Nucleic Acids Res 40(D1):D290–D301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puthoff DP, Sardesai N, Subramanyam S, Nemacheck JA, Williams CE (2005) Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feeding. Mol Plant Pathol 6(4):411–423

    Article  CAS  PubMed  Google Scholar 

  • Radauer C, Lackner P, Breiteneder H (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8:286

  • Rinderle SJ, Goldstein IJ, Matta KL, Ratcliffe RM (1989) Isolation and characterization of amaranthin, a lectin present in the seeds of amaranthus-caudatus, that recognizes the T-antigen (or cryptic-T)-antigen. J Biol Chem 264(27):16123–16131

    CAS  PubMed  Google Scholar 

  • Roach MJ, Deyholos MK (2007) Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues. Mol Genet Genomics 278(2):149–165

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Fristensky B, Kav NNV (2004) Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol 45(9):1320–1324

    Article  CAS  PubMed  Google Scholar 

  • Tai H, Pelletier C, Beardmore T (2004) Total RNA isolation from Picea mariana dry seed. Plant Mol Biol Report 22:93a–93e

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Transue TR, Smith AK, Mo HQ, Goldstein IJ, Saper MA (1997) Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat Struct Biol 4(10):779–783

    Article  CAS  PubMed  Google Scholar 

  • Van Damme EJM, Lannoo N, Peumans WJ (2008) Plant Lectins. In: Kader JC, Delseny M (ed), Adv Bot Res 48:107–209

  • Van Damme EJ, Fouquaert E, Lannoo N, Vandenborre G, Schouppe D, Peumans WJ (2011) Novel concepts about the role of lectins in the plant cell. In the molecular immunology of complex carbohydrates. Springer, Verlag, p 271–294

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Venglat P, Xiang DQ, Qiu SQ, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M et al (2011) Gene expression analysis of flax seed development. BMC Evol Biol 11:74

  • Wang ZW, Hobson N, Galindo L, Zhu SL, Shi DH, McDill J, Yang LF, Hawkins S, Neutelings G, Datla R et al (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72(3):461–473

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from Genome Canada, Genome Alberta and the Natural Sciences and Engineering Research Council (NSERC) Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Deyholos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 38 kb)

ESM 2

(PDF 38 kb)

ESM 3

(PDF 29 kb)

ESM 4

(PDF 81 kb)

ESM 5

(PDF 43 kb)

ESM 6

(PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faruque, K., Begam, R. & Deyholos, M.K. The Amaranthin-Like Lectin (LuALL) Genes of Flax: a Unique Gene Family with Members Inducible by Defence Hormones. Plant Mol Biol Rep 33, 731–741 (2015). https://doi.org/10.1007/s11105-014-0791-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0791-4

Keywords

Navigation