Skip to main content
Log in

Role of minerals in regulating the mineralization of cover crop residue and native organic matter and the community and necromass of microbes in flooded paddy soils

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The application of cover crop residue is an important means in managing paddy soil. This study was to investigate the influences of minerals on the mineralization of organic matter and the community and necromass of microbes in paddy soils amended with cover crop residue.

Methods

13C-labelled cover crop residue (Astragalus sinicus L.) was prepared using a pulse labeling method. The mineralization of cover crop residue and native soil organic matter and the community and necromass of microbes in two flooded paddy soils amended with or without illite, goethite and ferrihydrite was investigated by incubation experiments. The released CO2/CH4 was analyzed by gas chromatography. Amino sugar was used as the biomarker of microbial residue carbon. Soil microbial communities were analyzed by high-throughput sequencing and quantitative polymerase chain reaction.

Results

Illite, goethite and ferrihydrite significantly decreased the amounts of both CO2 and CH4 emissions from native soil organic carbon in both paddy soils. Moreover, the inhibition efficiency followed the same sequence of ferrihydrite > goethite > illite for both CO2 and CH4 emissions. However, ferrihydrite significantly stimulated the mineralization of cover crop residue in both paddy soils. The examined minerals, especially ferrihydrite, also tended to decrease bacterial and fungal abundance and diversity in both paddy soils. Moreover, the contents of both bacterial and fungal residue carbon were significantly decreased by the examined minerals in alkaline paddy soil.

Conclusion

Examined minerals tended to decrease total mineralization of cover crop residue and native organic matter, the microbial abundance, diversity, and necromass in flooded paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available from the corresponding author on reasonable request.

References

  • Abbas F, Hammad HM, Ishaq W, Farooque AA, Bakhat HF, Zia Z, Fahad S, Farhad W, Cerdà A (2020) A review of soil carbon dynamics resulting from agricultural practices. J Environ Manage 268

    Article  CAS  PubMed  Google Scholar 

  • Adhikari D, Dunham-Cheatham SM, Wordofa DN, Verburg P, Poulson SR, Yang Y (2019) Aerobic respiration of mineral-bound organic carbon in a soil. Sci Total Environ 651:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli Environ Sci Technol 42:6730–6735

    Article  CAS  PubMed  Google Scholar 

  • Bahram M, Bro R, Stedmon C, Afkhami A (2006) Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. J Chemom 20:99–105

    Article  CAS  Google Scholar 

  • Bai X, Yang X, Zhang S (2021) Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biol Fertil Soils 57:563–574

    Article  CAS  Google Scholar 

  • Bourne DG, McDonald IR, Murrell JC (2001) Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67:3802–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boye K, Noël V, Tfaily MM, Bone SE, Williams KH, Bargar JR, Fendorf S (2017) Thermodynamically controlled preservation of organic carbon in floodplains. Nat Geosci 10:415–419

    Article  CAS  Google Scholar 

  • Button ES, Chadwick DR, Jones DL (2022) Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy. Geoderma 409

    Article  CAS  Google Scholar 

  • Chen C, Hall SJ, Coward E, Thompson A (2020) Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat Commun 11:2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Zhang S, Liu L, Liu J, Ding X (2022) Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline–alkaline soil. Plant Soil 474:233–249

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Weinheim

    Book  Google Scholar 

  • Duan X, Li Z, Li Y, Yuan H, Gao W, Chen X, Ge T, Wu J, Zhu Z (2023) Iron-organic carbon associations stimulate carbon accumulation in paddy soils by decreasing soil organic carbon priming. Soil Biol Biochem 179

    Article  CAS  Google Scholar 

  • Fang Y, Singh BP, Collins D, Li B, Zhu J, Tavakkoli E (2018a) Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils. Soil Biol Biochem 126:168–178

    Article  CAS  Google Scholar 

  • Fang Y, Singh BP, Luo Y, Boersma M, Van Zwieten L (2018b) Biochar carbon dynamics in physically separated fractions and microbial use efficiency in contrasting soils under temperate pastures. Soil Biol Biochem 116:399–409

    Article  CAS  Google Scholar 

  • Finley BK, Mau RL, Hayer M, Stone BW, Morrissey EM, Koch BJ, Rasmussen C, Dijkstra P, Schwartz E, Hungate BA (2022) Soil minerals affect taxon-specific bacterial growth. ISME J 16:1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Franks M, Duncan E, King K, Vazquez-Ortega A (2021) Role of Fe- and Mn-(oxy)hydroxides on carbon and nutrient dynamics in agricultural soils: a chemical sequential extraction approach. Chem Geol 561

    Article  CAS  Google Scholar 

  • Garcia-Pausas J, Paterson E (2011) Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biol Biochem 43:1705–1713

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Hall S, Silver W (2013) Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Glob Change Biol 19:2804–2813

    Article  Google Scholar 

  • Han Y, Qu C, Hu X, Wang P, Wan D, Cai P, Rong X, Chen W, Huang Q (2022) Warming and humidification mediated changes of DOM composition in an Alfisol. Sci Total Environ 805

    Article  CAS  PubMed  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417

    Article  CAS  Google Scholar 

  • He Z, Zhu Y, Feng J, Ji Q, Chen X, Pan X (2021) Long-term effects of four environment-related iron minerals on microbial anaerobic oxidation of methane in paddy soil: a previously overlooked role of widespread goethite. Soil Biol Biochem 161

    Article  CAS  Google Scholar 

  • Huang Y, Huang L, Nie J, Geng M, Lu Y, Liao Y, Xue B (2022) Efects of substitution of chemical fertilizer by Chinese milk vetch on distribution and composition of aggregates–associated organic carbon fractions in paddy soils. Plant Soil 481:641–659

    Article  CAS  Google Scholar 

  • Jeewani PH, Che L, Zwieten LV, Shen C, Guggenberger G, Luo Y, Xu J (2020) Shifts in the bacterial community along with root-associated compartments of maize as affected by goethite. Biol Fertil Soils 56:1201–1210

    Article  CAS  Google Scholar 

  • Jeewani PH, Luo Y, Yu G, Fu Y, He X, Zwieten LV, Liang C, Kumar A, He Y, Kuzyakov Y, Qin H, Guggenberger G, Xu J (2021a) Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biol Biochem 162

    Article  CAS  Google Scholar 

  • Jeewani PH, Zwieten LV, Zhu Z, Ge T, Guggenberger G, Luo Y, Xu J (2021b) Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients. Soil Biol Biochem 160:108312

    Article  CAS  Google Scholar 

  • Kane ES, Veverica TJ, Tfaily MM, Lilleskov EA, Meingast KM, Kolka RK, Daniels AL, Chimner RA (2019) Reduction-oxidation potential and dissolved organic matter composition in northern peat soil: interactive controls of water table position and plant functional groups. J Geophys Res: Biogeosci 124:3600–3617

    Article  CAS  Google Scholar 

  • Keiluweit M, Wanzek T, Kleber M, Nico P, Fendorf S (2018) Anaerobic microsites have unaccounted role in soil carbon stabilization. Nat Commun 8:1171

    Google Scholar 

  • Lavie S, Stotzky G (1986) Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma Capsulatum Appl Environ Microbiol 51:65–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Hur J, Lee MH, Brogi SR, Kim TW, Shin HS (2019) Photochemical release of dissolved organic matter from particulate organic matter: spectroscopic characteristics and disinfection by–product formation potential. Chemosphere 235:586–595

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Shahbaz M, Zhu Z, Chen A, Nannipieri P, Li B, Deng Y, Wu J, Ge T (2021a) Contrasting response of organic carbon mineralisation to iron oxide addition under conditions of low and high microbial biomass in anoxic paddy soil. Biol Fertil Soils 57:117–129

    Article  CAS  Google Scholar 

  • Li Y, Shahbaz M, Zhu Z, Deng Y, Tong Y, Chen L, Wu J, Ge T (2021b) Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol Biochem 153:108106

  • Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:1–6

    Article  Google Scholar 

  • Liang C, Amelung W, Lehmann J, Kastner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Change Biol 25:3578–3590

    Article  Google Scholar 

  • Liu YR, Delgado-Baquerizo M, Wang JT, Hu HW, Yang Z, He JZ (2018) New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol Biochem 118:35–41

    Article  CAS  Google Scholar 

  • Liu X, Wu Y, Sun R, Hu S, Qiao Z, Wang S, Mi X (2020) NH4+-N/NO3-N ratio controlling nitrogen transformation accompanied with NO2-N accumulation in the oxic-anoxic transition zone. Environ Res 189

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zhu J, Yang X, Fu Q, Hu H, Huang Q (2022) Mineralization of organic matter during the immobilization of heavy metals in polluted soil treated with minerals. Chemosphere 301

    Article  CAS  PubMed  Google Scholar 

  • Lu R (1999) Method of soil agro-chemical analysis (in Chinese). China Agricultural Science and Technology, Beijing

    Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Zhu S, Wang Z, Chen D, Dai G, Feng B, Su X, Hu H, Li K, Han W, Liang C, Bai Y, Feng X (2018) Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat Commun 9:1–9

    Article  Google Scholar 

  • Mccormick ML, Adriaens P (2004) Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environ Sci Technol 38:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Mikutta R, Mikutta C, Kalbitz K, Scheel T, Kaiser K, Jahn R (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim Cosmochim Acta 71:2569–2590

    Article  CAS  Google Scholar 

  • Minamikawa K, Sakai N (2006) The practical use of water management based on soil redox potential for decreasing methane emission from a paddy field in Japan. Agric Ecosyst Environ 116:181–188

    Article  Google Scholar 

  • Mo F, Zhang YY, Liu Y, Liao YC (2021) Microbial carbon-use efficiency and straw-induced priming effect within soil aggregates are regulated by tillage history and balanced nutrient supply. Biol Fertil Soils 57:409–420

    Article  CAS  Google Scholar 

  • Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal Methods 5:6557–6566

  • Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glockner FO, Tedersoo L, Saar I, Koljalg U, Abarenkov K (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264

    Article  CAS  PubMed  Google Scholar 

  • Pronk GJ, Heister K, Vogel C, Babin D, Bachmann J, Ding GD, Ditterich F (2017) Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biol Fertil Soils 53:9–22

    Article  CAS  Google Scholar 

  • Qi L, Ma Z, Chang SX, Zhou P, Huang R, Wang Y, Wang Z, Gao M (2021) Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil. Sci Total Environ 752

    Article  CAS  PubMed  Google Scholar 

  • Qiu C, Feng Y, Wu M, Zhang J, Chen X, Li Z (2019) NanoFe3O4 accelerates methanogenic straw degradation in paddy soil enrichments. Appl Soil Ecol 144:155–164

    Article  Google Scholar 

  • Qu C, Qian S, Chen L, Guan Y, Zheng L, Liu S, Chen W, Cai P, Huang Q (2019) Size-dependent bacterial toxicity of hematite particles. Environ Sci Technol 53:8147–8156

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  • Rakhsh F, Golchin A, Agha ABA, Nelson PN (2020) Mineralization of organic carbon and formation of microbial biomass in soil: effects of clay content and composition and the mechanisms involved. Soil Biol Biochem 151

    Article  CAS  Google Scholar 

  • Saidy A, Smernik R, Baldock J, Kaiser K, Sanderman J, Macdonald L (2012) Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173–174:104–110

    Article  Google Scholar 

  • Saidy AR, Smernik RJ, Baldock JA, Kaiser K, Sanderman J (2015) Microbial degradation of organic carbon sorbed to phyllosilicate clays with and without hydrous iron oxide coating. Eur J Soil Sci 66:83–94

    Article  CAS  Google Scholar 

  • Singh S, Inamdar S, Scott D (2013) Comparison of two PARAFAC models of dissolved organic matter fluorescence for a mid-atlantic forested watershed in the USA. J Ecosyst 2013:1–16

    Article  Google Scholar 

  • Sokol NW, Slessarev E, Marschmann GL, Nicolas A, Blazewicz SJ, Brodie EL, Firestone MK, Foley MM, Hestrin R, Hungate BA, Koch BJ, Stone BW, Sullivan MB, Zablocki O, Pett-Ridge J (2022) Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat Rev Microbiol 20:415–430

    Article  CAS  PubMed  Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:572–579

    Article  CAS  Google Scholar 

  • Troyer ID, Amery F, Moorleghem CV, Smolders E, Merckx R (2011) Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: a batch incubation study. Soil Biol Biochem 43:513–519

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vieira S, Sikorski J, Gebala A, Boeddinghaus RS, Marhan S, Rennert T, Kandeler E, Overmann J (2020) Bacterial colonization of minerals in grassland soils is selective and highly dynamic. Environ Microbiol 22:917–933

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Hu R, Zhao J, Kuzyakov Y, Liu S (2016) Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils. Geoderma 271:173–180

    Article  CAS  Google Scholar 

  • Wang B, Huang Y, Li N, Yao H, Yang E, Soromotin AV, Kuzyakov Y, Cheptsov V, Yang Y, An S (2022) Initial soil formation by biocrusts: nitrogen demand and clay protection control microbial necromass accrual and recycling. Soil Biol Biochem 167

    Article  CAS  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  CAS  PubMed  Google Scholar 

  • Whitman T, Neurath R, Perera A, Chu-Jacoby I, Ning D, Zhou J, Nico P, Pett-Ridge J, Firestone M (2018) Microbial community assembly differs across minerals in a rhizosphere microcosm. Environ Microbiol 20:4444–4460

    Article  CAS  PubMed  Google Scholar 

  • Woo SH, Enders A, Lehmann J (2016) Microbial mineralization of pyrogenic organic matter in different mineral systems. Org Geochem 98:18–26

    Article  CAS  Google Scholar 

  • Xu JX, Li XM, Sun GX, Cui L, Ding LJ, He C, Li LG, Shi Q, Smets BF, Zhu YG (2019) Fate of labile organic carbon in paddy soil is regulated by microbial ferric iron reduction. Environ Sci Technol 53:8533–8542

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Liu Y, Zhu J, Shi L, Fu Q, Chen J, Hu H, Huang Q (2020) Influence mechanisms of long-term fertilizations on the mineralization of organic matter in ultisol. Soil Tillage Res 201:1–8

    Article  Google Scholar 

  • Xu P, Wu J, Wang H, Han S, Zhu J, Fu Q, Geng M, Hu H, Huang Q (2021) Long–term partial substitution of chemical fertilizer with green manure regulated organic matter mineralization in paddy soil dominantly by modulating organic carbon quality. Plant Soil 468:459–473

    Article  CAS  Google Scholar 

  • Yao J, Qin S, Liu T, Clough TJ, Monnig NW, Luo J, Hu C, Ge T, Zhou S (2022) Rice root Fe plaque enhances oxidation of microbially available organic carbon via Fe(III) reduction-coupled microbial respiration. Soil Biol Biochem 167

    Article  CAS  Google Scholar 

  • Yuan C, Na S, Li F, Hu H (2021) Impact of sulfate and iron oxide on bacterial community dynamics in paddy soil under alternate watering conditions. J Hazard Mater 408

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Amelung W (1996) Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem 28:1201–1206

    Article  CAS  Google Scholar 

  • Zhu Z, Fang Y, Liang Y, Li Y, Liu S, Li Y, Li B, Gao W, Yuan H, Kuzyakov Y, Wu J (2022) Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biol Biochem 169

    Article  CAS  Google Scholar 

  • Zhuang Y, Zhu J, Shi L, Fu Q, Hu H, Huang Q (2022) Influence mechanisms of iron, aluminum and manganese oxides on the mineralization of organic matter in paddy soil. J Environ Manage 301

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by Natural Science Foundation of China (Grant number: 41877031).

Author information

Authors and Affiliations

Authors

Contributions

Lei Shi: Methodology, Investigation, Data curation, Formal analysis, Writing-Original draft preparation, Jun Zhu: Conceptualization, Supervision, Funding acquisition, Writing-Review and Editing, Qingling Fu: Methodology, Resources, Hongqing Hu: Resources, Qiaoyun Huang: Resources.

Corresponding author

Correspondence to Jun Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Al Imran Malik.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.26 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Zhu, J., Fu, Q. et al. Role of minerals in regulating the mineralization of cover crop residue and native organic matter and the community and necromass of microbes in flooded paddy soils. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06593-y

Keywords

Navigation