Skip to main content

Advertisement

Log in

Root traits and plasticity differences explain complementarity between co-existing species in phosphorus-limited grassland

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

The complementarity and selection effects are important in the diversity-productivity relationship. The diversity of functional traits among species has an important effect on complementarity. However, it remains to be explored which root functional traits play a central role in explaining biomass production and whether the variation in trait plasticity caused by environmental changes affects the interspecific complementarity effects.

Methods

We characterized three leaf and 10 root traits related to P acquisition in four temperate grassland species with various resource foraging strategies in a study featuring monocultures and two-species mixtures in a greenhouse with two P-limited (20 mg P kg−1 soil as C6H6Na12O24P6 or KH2PO4) and one P-adequate (200 mg P kg−1 soil as KH2PO4) environments.

Results

Majority of mixed communities produced significant net biodiversity and complementarity effects that varied among species combinations and P supplies. In the two P-limited treatments, the functional dispersion of single root traits (root volume, root diameter, root:shoot ratio, or exudation of acid phosphatase or organic acid anions) and plasticity difference in single traits (root length, root volume, root surface area, or exudation of organic acid anions) among the species explained the variation in the complementarity effect. However, the difference in the multi-trait space based on all 13 traits and their plasticity had no correlation with the complementarity effect regardless of P supply.

Conclusion

Our results suggested that differences in key root traits and plasticity among species played an important role in driving complementarity effects between plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Adams AE, Besozzi EM, Shahrokhi G, Patten MA (2022) A case for associational resistance: apparent support for the stress gradient hypothesis varies with study system. Ecol Lett 25:202–217

    Article  PubMed  Google Scholar 

  • Akram MA, Wang XT, Shrestha N, Zhang YH, Sun Y, Yao SR, Li JH, Hou QQ, Hu WG, Ran JZ, Deng JM (2023) Variations and driving factors of leaf functional traits in the dominant desert plant species along an environmental gradient in the drylands of China. Sci Total Environ 897:165394

  • Alvey S, Bagayoko M, Neumann G, Buerkert A (2001) Cereal/legume rotations affect chemical properties and biological activities in two West African soils. Plant Soil 231:45–54

    Article  CAS  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  • Barry KE, Mommer L, van Ruijven J et al (2019) The future of complementarity: disentangling causes from consequences. Trends Ecol Evol 34:167–180

    Article  PubMed  Google Scholar 

  • Belluau M, Vitali V, Parker WC, Paquette A, Messier C, Chen H (2021) Overyielding in young tree communities does not support the stress-gradient hypothesis and is favoured by functional diversity and higher water availability. J Ecol 109:1790–1803

    Article  CAS  Google Scholar 

  • Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng A, Ma K, Liu X (2021) Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat Ecol Evol 5:1594–1603

    Article  PubMed  Google Scholar 

  • Brooker RW, George TS, Homulle Z, Karley AJ, Newton AC, Pakeman RJ, Schöb C, Wright A (2021) Facilitation and biodiversity–ecosystem function relationships in crop production systems and their role in sustainable farming. J Ecol 109:2054–2067

    Article  Google Scholar 

  • Burns JH, Strauss SY (2012) Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits. Ecology 93:S126–S137

    Article  Google Scholar 

  • Cadotte MW (2017) Functional traits explain ecosystem function through opposing mechanisms. Ecol Lett 20:989–996

    Article  PubMed  Google Scholar 

  • Cadotte M, Albert CH, Walker SC (2013) The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol Lett 16:1234–1244

    Article  PubMed  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci U S A 104:18123–18128

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ceulemans T, Bode S, Bollyn J, Harpole S, Coorevits K, Peeters G, Van Acker K, Smolders E, Boeckx P, Honnay O (2017) Phosphorus resource partitioning shapes phosphorus acquisition and plant species abundance in grasslands. Nat Plants 3:1–7

    Article  Google Scholar 

  • Darch T, Giles CD, Blackwell MSA et al (2018) Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability. Plant Soil 427:125–138

    Article  CAS  PubMed  Google Scholar 

  • de Vries FT, Brown C, Stevens CJ (2016) Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant Soil 409:297–312

    Article  Google Scholar 

  • Fox JW (2005) Interpreting the “selection effect” of biodiversity on ecosystem function. Ecol Lett 8:846–856

    Article  Google Scholar 

  • Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018) Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytol 219:1338–1352

    Article  PubMed  Google Scholar 

  • Freschet GT, Roumet C, Comas LH et al (2021) Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol 232:1123–1158

    Article  PubMed  Google Scholar 

  • Hanson WC (1950) The photometric determination of phosphorus in fertilizers using the phosphovanado-molybdate complex. J Sci Food Agric 1:172–173

    Article  CAS  Google Scholar 

  • Hong P, Schmid B, De Laender F et al (2022) Biodiversity promotes ecosystem functioning despite environmental change. Ecol Lett 25:555–569

    Article  PubMed  Google Scholar 

  • Kraft NJB, Crutsinger GM, Forrestel EJ, Emery NC (2014) Functional trait differences and the outcome of community assembly: an experimental test with vernal pool annual plants. Oikos 123:1391–1399

    Article  ADS  Google Scholar 

  • Kraft NJB, Godoy O, Levine JM (2015) Plant functional traits and the multidimensional nature of species coexistence. Proc Natl Acad Sci 112:797–802

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kunstler G, Falster D, Coomes DA et al (2016) Plant functional traits have globally consistent effects on competition. Nature 529:204–207

    Article  CAS  PubMed  ADS  Google Scholar 

  • Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lambers H, Martinoia E, Renton M (2015) Plant adaptations to severely phosphorus-impoverished soils. Curr Opin Plant Biol 25:23–31

    Article  CAS  PubMed  Google Scholar 

  • Lambers H (2022) Phosphorus acquisition and utilization in plants. Ann Rev Plant Biol 73:1.1–1.26

  • Li SM, Li L, Zhang FS, Tang C (2004) Acid phosphatase role in chickpea/maize intercropping. Ann Bot 94:297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci 104:11192–11196

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Li L, Tilman D, Lambers H, Zhang FS (2014) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203:63–69

    Article  PubMed  Google Scholar 

  • Li B, Li YY, Wu HM, Zhang FF, Li CJ, Li XX, Lambers H, Li L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci 113:6496–6501

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Li H, Liu B, McCormack ML, Ma Z, Guo D (2017) Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytol 216:1140–1150

    Article  PubMed  Google Scholar 

  • Li C, Kuyper TW, van der Werf W, Zhang J, Li H, Zhang F, Hoffland E (2018) Testing for complementarity in phosphorus resource use by mixtures of crop species. Plant Soil 439:163–177

    Article  Google Scholar 

  • Liang JJ, Crowther TW, Picard N et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354:aaf8957

  • Liu C, Li Y, Yan P, He N (2021) How to improve the predictions of plant functional traits on ecosystem functioning? Front Plant Sci 12:622260

    Article  PubMed  PubMed Central  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  ADS  Google Scholar 

  • Loreau M, Sapijanskas J, Isbell F, Hector A (2012) Niche and fitness differences relate the maintenance of diversity to ecosystem function: comment. Ecology 93:1482–1487

    Article  PubMed  Google Scholar 

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205

    Article  Google Scholar 

  • Mahaut L, Fort F, Violle C, Freschet GT (2020) Multiple facets of diversity effects on plant productivity: species richness, functional diversity, species identity and intraspecific competition. Funct Ecol 34:287–298

    Article  Google Scholar 

  • Nakamura T, Nakamura M (2016) Root respiratory costs of ion uptake, root growth, and root maintenance in wetland plants: efficiency and strategy of O2 use for adaptation to hypoxia. Oecologia 182:667–678

    Article  PubMed  ADS  Google Scholar 

  • Pang JY, Bansal R, Zhao HX, Bohuon E, Lambers H, Ryan MH, Ranathunge K, Siddique KHM (2018) The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytol 219:518–529

    Article  CAS  PubMed  Google Scholar 

  • Perez-Ramos IM, Matias L, Gomez-Aparicio L, Godoy O (2019) Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat Commun 10:2555

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Phoenix GK, Johnson DA, Muddimer SP, Leake JR, Cameron DD (2020) Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants. Nature Plants 6:349–354

    Article  CAS  PubMed  Google Scholar 

  • Postma JA, Dathe A, Lynch JP (2014) The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol 166:590–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiffers K, Tielborger K, Tietjen B, Jeltsch F (2011) Root plasticity buffers competition among plants: theory meets experimental data. Ecology 92:610–620

    Article  PubMed  Google Scholar 

  • Shen J, Rengel Z, Tang C, Zhang F (2003) Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus. Plant Soil 248:199–206

    Article  CAS  Google Scholar 

  • Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B (2021) Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytol 229:259–271

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493

    Article  Google Scholar 

  • Turnbull LA, Levine JM, Loreau M, Hector A (2013) Coexistence, niches and biodiversity effects on ecosystem functioning. Ecol Lett 16:116–127

    Article  PubMed  Google Scholar 

  • van der Plas F (2019) Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev 94:1220–1245

    Article  PubMed  Google Scholar 

  • van der Plas F, Schroder-Georgi T, Weigelt A et al (2020) Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat Ecol Evol 4:1602–1611

    Article  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  PubMed  Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    Article  CAS  Google Scholar 

  • Wagg C, Ebeling A, Roscher C, Ravenek J, Bachmann D, Eisenhauer N, Mommer L, Buchmann N, Hillebrand H, Schmid B, Weisser WW, Sayer E (2017) Functional trait dissimilarity drives both species complementarity and competitive disparity. Funct Ecol 31:2320–2329

    Article  Google Scholar 

  • Walde M, Allan E, Cappelli SL, Didion-Gency M, Gessler A, Lehmann MM, Pichon NA, Grossiord C (2021) Both diversity and functional composition affect productivity and water use efficiency in experimental temperate grasslands. J Ecol 109:3877–3891

    Article  CAS  Google Scholar 

  • Wen ZH, Li HB, Shen Q, Tang XM, Xiong CY, Li HG, Pang JY, Ryan MH, Lambers H, Shen JB (2019) Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol 223:882–895

    Article  CAS  PubMed  Google Scholar 

  • Wilke BJ, Snapp SS (2008) Winter cover crops for local ecosystems: linking plant traits and ecosystem function. J Sci Food Agric 88:551–557

    Article  CAS  Google Scholar 

  • Williams LJ, Paquette A, Cavender-Bares J, Messier C, Reich PB (2017) Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat Ecol Evol 1:0063

    Article  Google Scholar 

  • Yang X, Xu Y, Jiang M, Wang Y, Lu H, Xue Y, Wang J, Zhao N, Gao Y (2021) Interpreting the effects of plant species diversity and genotypic diversity within a dominant species on above- and belowground overyielding. Sci Total Environ 786:147505

    Article  CAS  ADS  Google Scholar 

  • Yu RP, Li XX, Xiao ZH, Lambers H, Li L (2020) Phosphorus facilitation and covariation of root traits in steppe species. New Phytol 226:1285–1298

    Article  CAS  PubMed  Google Scholar 

  • Yu RP, Su Y, Lambers H, van Ruijven J, An R, Yang H, Yin XT, Xing Y, Zhang WP, Li L (2023) A novel proxy to examine interspecific phosphorus facilitation between plant species. New Phytol 239:1637–1650

    Article  CAS  PubMed  Google Scholar 

  • Zhang WP, Liu GC, Sun JH, Fornara D, Zhang LZ, Zhang FF, Li L (2017) Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Funct Ecol 31:469–479

    Article  Google Scholar 

  • Zhang WP, Gao SN, Li ZX, Xu HS, Yang H, Yang X, Fan HX, Su Y, Fornara D, Li L (2021) Shifts from complementarity to selection effects maintain high productivity in maize/legume intercropping systems. J Appl Ecol 58:2603–2613

    Article  CAS  Google Scholar 

  • Zhong X, Lin N, Ding J et al (2021) Genome-wide transcriptome profiling indicates the putative mechanism underlying enhanced grain size in a wheat mutant. 3 Biotech 11:1–16

Download references

Acknowledgements

This work was partially funded by National Natural Science Foundation of China (32271576 and 32071506).

Funding

This work was supported by National Natural Science Foundation of China (32271576, 32071506 and 31972957).

Author information

Authors and Affiliations

Authors

Contributions

H.J. and N.Z. conceived the ideas and designed methodology; H.J. and J.J. analyzed the data. H.J., J.J., H.L. and Z.R. led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding authors

Correspondence to Jingying Jing or Hongbo Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Responsible Editor: Hans Lambers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2578 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Zhou, N., Rengel, Z. et al. Root traits and plasticity differences explain complementarity between co-existing species in phosphorus-limited grassland. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06540-x

Keywords

Navigation