Skip to main content
Log in

The interactions between soil invertebrates and microbes mediate litter decomposition in the rainy zone of western China

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Knowledge regarding the interactive effects of soil invertebrates and microbes on litter decomposition is limited. We aimed to reveal the interaction between soil invertebrates and microbes, and the mechanism underlying the effects of them on litter decomposition.

Methods

Foliar litter of German oak (Quercus acutissima Carruth.) and China cedar (Cryptomeria sinensis Miquel.) were enclosed in the nylon bags with two different mesh sizes and incubated on the floor in a rainy zone of western China, respectively. Then retrieved at four critical periods each year in two years. The mass loss, invertebrates, and microbial community in the litterbags were measured.

Results

The invertebrate abundances in both litter species were higher in the first year than in the second year, and that in German oak litter was higher than that in China cedar litter at most periods. Meanwhile, German oak litter decomposed faster than China cedar litter, and significantly higher decomposition rates occurred in the micro and early rainy seasons. Furthermore, soil invertebrate exclusion made the decomposition rates of German oak and China cedar litter decrease by 14.45% and 26.45%, respectively. Additionally, the interactive effects between invertebrates and microbes on litter decomposition varied greatly with litter quality and critical periods. The interactive effects between soil invertebrates and microbial communities dominated litter mass loss in the first decomposition year, but the gram-positive bacteria became the dominant decomposers in the second decomposition year.

Conclusion

These results provided a holistic decomposition view, highlighting how invertebrates and microbes act in synergy to degrade litter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article. No new data were created or analysed in this study. Data sharing does not apply to this article.

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Allison SD, Ying L, Claudia W, Goulden ML, Martiny AC, Treseder KK, Martiny JBH (2013) Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94:714–725

    Article  PubMed  Google Scholar 

  • Anaya CA, Jaramillo VJ, Martínez-Yrízar A, García-Oliva F (2012) Large rainfall pulses control litter decomposition in a tropical dry forest: evidence from an 8-year study. Ecosystems 15:652–663

    Article  Google Scholar 

  • Ashton LA, Griffiths HM, Parr CL, Evans TA, Didham RK, Hasan F, The YA, Tin HS, Vairappan CS, Eggleton P (2019) Termites mitigate the effects of drought in tropical rainforest. Science 363(6423):174–177

    Article  CAS  PubMed  Google Scholar 

  • Austin AT, Vivanco L, Gonzalez-Arzac A, Perez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314

    Article  Google Scholar 

  • Bani A, Pioli S, Ventura M, Panzacchi P, Borruso L, Tognetti R, Tonon G, Brusetti L (2018) The role of microbial community in the decomposition of leaf litter and deadwood. Appl Soil Ecol 126:75–84

    Article  Google Scholar 

  • Benbow ME, Barton PS, Ulyshen MD, Beasley JC, DeVault TL, Strickland MS, Tomberlin JK, Jordan HR, Pechal JL (2019) Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol Monogr 89:e01331

    Article  Google Scholar 

  • Berg B, McClaugherty C (2014) Plant litter. Springer Verlag, Berlin

    Book  Google Scholar 

  • Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann PHW (2018) Insect-fungus interactions in dead wood systems. In: Ulyshen MD (ed) Saproxylic Insects: Diversity, Ecology and Conservation, Zoological Monographs. Springer International Publishing, Cham, pp 377–427

    Chapter  Google Scholar 

  • Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165(3):553–565

    Article  PubMed  Google Scholar 

  • Boddy L, Jones TH (2008) Interactions between basidiomycota and invertebrates. In: Boddy L, Frankland JC, van West P (eds) Ecology of Saprotrophic Basidiomycetes. Elsevier Ltd, London, pp 155–179

    Chapter  Google Scholar 

  • Boer WD, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • Bouskill N, Lim H, Borglin S, Salve R, Wood T, Silver W, Brodie E (2013) Preexposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–394

    Article  CAS  PubMed  Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238

    Article  CAS  Google Scholar 

  • Briones MJI, Ostle NJ, Mcnamara NP (2009) Functional shifts of grassland soil communities in response to soil warming. Soil Biol Biochem 41(2):315–322

    Article  CAS  Google Scholar 

  • Cai XL, Yang GR, Feng Y, Shen R, Zhao L, Lin DM (2023) Detritivores accelerate litter mixture decomposition effect via greater consumption of high-quality litter. Chin J Appl Ecol 34:2889–2897

    Google Scholar 

  • Canhoto C, Graça MAS (2008) Interactions between fungi and stream invertebrates: back to the future. In: Sridhar S, Bärlocher F, Hyde KD (eds) Novel techniques and ideas in mycology. Fungal Diversity Research Series, vol 20. Hong Kong University Press, Hong Kong, pp 302–325

    Google Scholar 

  • Center NMI (2021) China meteorological data service center. http://data.cma.cn/user/modifyPasswd/show_value/normal.html. Accessed June 2022

  • Chang CH (2017) Extraction of PLFA from wood debris. https://www.protocols.io/view/extraction-of-plfa-from-wood-debris-ixmcfk6. Accessed June 2022

  • Christian K, Alexer B (2009) The role of microarthropods in terrestrial decomposition: a meta–analysis of 40 years of litterbag studies. Biol Rev 84:375–389

  • Cole L, Bardgett RD, Ineson P et al (2002) Relationships between enchytraeid worms (Oligochaeta), climate change, and the release of dissolved organic carbon from blanket peat in northern England. Soil Biol Biochem 34:600–607

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pe´rez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Dıaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Coulson S, Hodkinson I, Wooley C (1996) Effects of experimental temperature elevation on high arctic soil microarthropod population. Polar Biol 16:147–153

    Article  Google Scholar 

  • Couteaûx MM, Bottner P, Berg B (1995) Litter decomposition, climate, and litter quality. Trends Ecol Evol 10:63–66

    Article  PubMed  Google Scholar 

  • Criquet S (2002) Measurement and characterization of cellulase activity in sclerophyllous forest litter. J MICROBIOL METH 50(2):165–173

    Article  CAS  Google Scholar 

  • Crossley D, Blair JM (1991) A high-efficiency, low-technology Tullgren-type extractor for soil microarthropods. Agric Ecosyst Environ 34:187–192

    Article  Google Scholar 

  • Crowther TW, Boddy L, Hefin Jones T (2012) Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J 6:1992–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowther TW, Van den Wan HJ, Mayes J, Keiser MA, Mo A, Averill L, Maynard C (2019) The global soil community and its influence on biogeochemistry. Science 365:eaav0550

    Article  CAS  PubMed  Google Scholar 

  • Crutsinger GM, Sanders NJ, Classen AT (2009) Comparing intra-and inter-specific effects on litter decomposition in an old-field ecosystem. Basic Appl Ecol 10:535–543

    Article  Google Scholar 

  • Cui Y, Wang SL, Yu XJ, Yan SK (2012) Effects of forest soil fauna on early-stage litter decomposition and nutrient release. Chin J Ecol 31:2709–2715

    Google Scholar 

  • David JF (2014) The role of litter-feeding macro-arthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–118

    Article  CAS  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    Article  PubMed  Google Scholar 

  • Denton CS, Bardgett RD, Cook R, Hobbs PJ (1999) Low amounts of root herbivory positively influence the rhizosphere microbial community in temperate grassland soil. Soil Biol Biochem 31:155–165

    Article  CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microb 59:3605–3617

    Article  Google Scholar 

  • Frouz J (2018) Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332:161–172

    Article  CAS  Google Scholar 

  • Garcıa-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Gessner MO, Chauvet E (2002) A case for using litter breakdown to assess functional stream integrity. Ecol Appl 12:498–510

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Change Biol 6:751–765

    Article  Google Scholar 

  • Griffiths HM, Ashton LA, Parr CL, Eggleton P (2021) The impact of invertebrate decomposers on plants and soil. New Phytol 231:2142–2149

    Article  PubMed  Google Scholar 

  • Gulis V, Suberkropp K (2003) Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19

    Article  CAS  PubMed  Google Scholar 

  • Güsewell S, Gessner MO (2009) N:P ratios influence litter decomposition and colonization by fungi and bacteria in Microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  • Hattenschwiler S (2005) Effects of tree species diversity on litter quality and decomposition. In: Scherer-Lorenzen M, Korner ¨C, Schulze E-D (eds) Forest Diversity and function: temperate and Boreal systems. Springer, Berlin Heidelberg, pp 149–164

    Chapter  Google Scholar 

  • Heneghan L, Coleman DC, Zou X et al (1999) Soil microarthropod contributions to decomposition dynamics: tropical-temperate comparisons of a single substrate. Ecology 80:1873–1882

    Google Scholar 

  • Huhta V (2007) The role of soil fauna in ecosystems: a historical review. Pedobiologia 50:489–495

    Article  Google Scholar 

  • Iii WMM, Ostertag R, Cowie RH (2011) Macro-invertebrates accelerate litter decomposition and nutrient release in a hawaiian rainforest. Soil Biol Biochem 43:206–211

    Article  Google Scholar 

  • Jacobsen RM, Kauserud H, Sverdrup-Thygeson A, Bjorbækmo MM, Birkemoe T (2017) Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol 29:76–84

    Article  Google Scholar 

  • Jacobsen RM, Sverdrup-Thygeson A, Kauserud H, Mundra S, Birkemoe T (2018) Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct Ecol 32:2571–2582

    Article  Google Scholar 

  • Jin YH (2012) Variations of soil microbial diversity along an elevation gradient in the Wuyi Mountains[D]. Nanjing Forestry University, Nanjing

  • Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol Rev 84:375–389

    Article  PubMed  Google Scholar 

  • Li J, Chang CH, Yang WQ (2022) Interactions between invertebrate and microbial communities in decomposing camphor and Masson pine litter varied with seasonal rainfall. Appl Soil Ecol 169:104231

    Article  Google Scholar 

  • Lin B, Liu Q, Yan WU, Hai HE (2004) Advances in the studies of forest litter. Chin J Ecol 23:60–64

    Google Scholar 

  • Lin DM, Wang F, Fanin N, Pang M, Dou PP, Wang HJ, Qian SH, Zhao L, Yang YC, Mi XC, Ma KP (2019) Soil faunas promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol Bioche 136:107519

    Article  CAS  Google Scholar 

  • Liu GD, Sun JF, Xie P, Guo C, Zhu KX, Tian K (2024) Climate warming enhances microbial network complexity by increasing bacterial diversity and fungal interaction strength in litter decomposition. Sci Total Environ 908:168444

    Article  CAS  PubMed  Google Scholar 

  • Liu RL, Yang WQ, Tan B (2013) Effects of soil fauna on N and P dynamics at different stages during the first year of litter decomposition in subalpine and alpine forests of western Sichuan. Chin J Plant Ecol 37(12):1080–1090

    Article  Google Scholar 

  • Lu R (1999) Soil and agro-chemical Analytical methods. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Lustenhouwer N, Maynard DS, Bradford MA, Lindner DL, Oberle B, Zanne AE, Crowther TW (2020) A trait-based understanding of wood decomposition by fungi. Proceedings of the National Academy of Sciences, USA. 117:11551–11558

  • Ma Z, Yang W, Wu F, Tan B (2018) The polyphenol degradation characteristics of leaf litter at different rainy stages in a subtropical evergreen broad-leaved forest in the Sichuan Basin. China Acta Ecol Sin 38:3078–3085

    CAS  Google Scholar 

  • Marian F, Sandmann D, Krashevska V, Maraun M, Scheu S (2018) Altitude and decomposition stage rather than litter origin structure soil microarthropod communities in tropical montane rainforests. Soil Biol Biochem 125:263–274

    Article  CAS  Google Scholar 

  • Moore TR, Trofymow JA, Taylor B (1999) Litter decomposition rates in Canadian forests. Glob Chang Biol 5:75–82

    Article  Google Scholar 

  • Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006) Patterns of carbon, nitrogen, and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems 9:46–62

    Article  CAS  Google Scholar 

  • Mora J, Elosegi A, Duarte S, Cassio F, Pascoal C, Romaní A (2016) Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Microbiol Ecol 92:fiw121

    Article  Google Scholar 

  • Negussie A, Degerickx J, Norgrove L, Achten WM, Hadgu KM, Aynekulu E, Muys B (2015) Effects of accession, spacing and pruning management on in-situ leaf litter decomposition of Jatropha curcas L. in Zambia. Biomass Bioenerg 81:505–513

    Article  CAS  Google Scholar 

  • Ni X, Berg B, Yang W, Li H, Liao S, Tan B, Yue K, Xu Z, Zhang L, Wu F (2018) Formation of forest gaps accelerates C, N and P release from foliar litter during 4 years of decomposition in an alpine forest. Biogeochemistry 139:321–335

    Article  CAS  Google Scholar 

  • Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009) Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Appl Soil Ecol 42:183–190

    Article  Google Scholar 

  • Olsen JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips O et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Pausas JG, Bond WJ (2020) On the three major recycling pathways in terrestrial ecosystems. Trends Ecol Evol 35:767–775

    Article  PubMed  Google Scholar 

  • Pereira S, Buresova A, Kopecky J, Madrova P, Aupic-Samain A, Fernandez C, Baldy V, Mareckova M (2019) Litter traits and rainfall reduction alter microbial litter decomposers: the evidence from three Mediterranean forests. FEMS Microbiol Ecol 95:fiz168

    Article  CAS  PubMed  Google Scholar 

  • Polyakova O, Billor N (2007) Impact of deciduous tree species on litterfall quality, decomposition rates, and nutrient circulation in pine stands. Ecol Manag 253:11–18

    Article  Google Scholar 

  • Saggar S, Mercer C, Hedley C, Yeates G (1999) Increase in 14C-carbon translocation to the soil microbial biomass when five species of plant-parasitic nematodes infect roots of white clover. Nematology 1:295–300

    Article  Google Scholar 

  • Schimel D, Alves D, Enting I, Heimann M, Joos F, Raynaud D, Wigley T, Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E, Zhou X, Jonas P, Charlson R, Rodhe H, Sadasivan S, Shine KP, Fouquart Y, Ramaswamy V, Solomon S, Srinivasan J, Albritton D, Derwent R, Isaksen I, Lal M, Wuebbles D (1996) Radiative forcing of climate change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (Eds.), Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press

  • Schutter M, Dick R (2001) Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol Biochem 33:1481–1491

    Article  CAS  Google Scholar 

  • Seibold S, Müller J, Baldrian P, Cadotte MW, Stursova M, Biedermann PHW, Krah FS, Bässler C (2019) Fungi associated with beetles dispersing from dead wood—Let’s take the beetle bus! Fungal Ecol 39:100–108

    Article  Google Scholar 

  • Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, Cadotte MW et al (2021) The contribution of insects to global forest deadwood decomposition. Nature 597:77–81

    Article  CAS  PubMed  Google Scholar 

  • Steffen KT, Cajthaml T, Snajdr J (2007) Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. RES MICROBIOL 158:447–455

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Grayston SJ, Prescott CE (2013) Effects of leaf litter consumption by millipedes (Harpaphe haydeniana) on subsequent decomposition depends on litter type. Soil Biol Biochem 57:116–123

    Article  CAS  Google Scholar 

  • Svyrydchenko AO, Brygadyrenko VV (2014) Trophic preferences of Rossiulus Kessleri (Diplopoda, Julidae) for the litter of various tree species. Folia Oecol 41:202–212

    Google Scholar 

  • Tan B, Yin R, Zhang J, Xu Z, Liu Y, He S, Zhang L, Li H, Wang L, Liu S, You C, Peng C (2020) Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways. Ecosystems 24:1142–1156

    Article  Google Scholar 

  • Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85

  • Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM et al (2008) Global Decomposition experiment shows soil animal impacts on decomposition are climate-dependent: soil fauna impacts on global decomposition. Glob Chang Biol 14:2661–2177

  • Wang L, Zhang J, He R, Chen Y, Yang L, Zheng H, Li H, Xiao J, Liu Y (2018) Impacts of soil fauna on lignin and cellulose degradation in litter decomposition across an alpine forest-tundra ecotone. Eur J Soil Biol 87:53–60

    Article  Google Scholar 

  • Wardle (1997) Linkages between soil biota, plant litter quality, and decomposition. In: Cadish G, Giller K (eds) Driven by nature plant litter quality & decomposition. CAB International, Wallingford, pp 107–123

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Waring BG (2013) Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biol Biochem 64:89–95

    Article  CAS  Google Scholar 

  • White D, Davis W, Nickels J, King J, Bobbie R (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Dı´az S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Wu F, Yang W, Zhang J, Deng R (2010) Litter decomposition in two subalpine forests during the freeze–thaw season. Acta Oecol 36:135–140

    Article  Google Scholar 

  • Xu X, Li G, Li C, Zhang J, Wang Q, Simmons DK, Chen X, Wijesena N, Zhu W, Wang Z, Wang Z, Ju B, Ci W, Lu X, Yu D, Wang QF, Aluru N, Oliveri P, Zhang YE, Martindale MQ, Liu J (2019) Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. Natl Sci Rev 65:993–1003

    Article  CAS  Google Scholar 

  • Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, in southwestern China. Soil Biol Biochem 41:910–918

    Article  CAS  Google Scholar 

  • Yang X, Shao M, Li T (2020) Effects of terrestrial isopods on soil nutrients during litter decomposition. Geoderma 376:114546

    Article  CAS  Google Scholar 

  • Yin WY (1998) Pictorial keys to soil animals of China. Science Press, Beijing

    Google Scholar 

  • Yin R, Eisenhauer N, Auge H, Purahong W, Schmidt A, Schadler M (2019) Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biol Biochem 131:141–148

    Article  CAS  Google Scholar 

  • You CM (2019) Biological element transfer and its short-term response to nitrogen addition in typical mixed plantations of the rainy area of western China[D]. Sichuan Agricultural University, Chengdu

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zhang M, Cheng X, Geng Q, Shi Z, Luo Y, Xu X (2018) Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecol Biogeogr 28:1469–1486

    Article  Google Scholar 

  • Zhang D, Ma W, Wang C, Deng Z, Zhang T (2023) Bibliometric analysis of the development of research on the effects of litter decomposition on soil carbon. Chin J Soil Sci 54:1261–1270

    Google Scholar 

  • Zou J, Cadotte M, Bässler C, Brandl R, Baldrian P, Borken W, Stengel E, Luo Y, Müller J, Seibold S (2023) Wood decomposition is increased by insect diversity, selection effects, and interactions between insects and microbes. Ecology 104:e4184

    Article  PubMed  Google Scholar 

  • Zuo J, Berg MP, Klein R, Nusselder J, Neurink G, Decker O, Hefting MM, Sass-Klaassen U, van Logtestijn RSP, Goudzwaard L, van Hal J, Sterck FJ, Poorter L, Cornelissen JHC (2016) Faunal community consequence of interspecific bark trait dissimilarity in early-stage decomposing logs. Funct Ecol 30:1957–1966

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this study would like to thank all the people who were involved in the initial sampling assignments.

Funding

This study was supported by the National Natural Science Foundation of China (32071554) and the Taizhou Bureau of Science and Technology (22nya11).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.Y., and J.H.; methodology, J.H., and W.Y.; software, J.H., and F.L.; validation, J.H., and W.Y.; formal analysis, J.H.; investigation, J.H., F.L., Z.W., X.L., M.X.; Q.W.; R.C.; resources, W.Y.; data curation, W.Y., and J.H.; writing original draft preparation, J.H.; writing review and editing, W.Y., R.C and J.H.; visualization, J.H.; supervision, W.Y.; project administration, W.Y.; funding acquisition, W.Y. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wanqin Yang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 403 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Cao, R., Li, F. et al. The interactions between soil invertebrates and microbes mediate litter decomposition in the rainy zone of western China. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06531-y

Keywords

Navigation