Skip to main content

Advertisement

Log in

Shifts in plant resource use strategies across climate and soil gradients in dryland steppe communities

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Despite being Earth’s largest biome and a key contributor to global energy budgets, arid regions (or drylands) are critically understudied relative to mesic ecosystems. Here we clarify how dryland species vary in their functional traits across environmental gradients.

Methods

We measured nine traits reflecting resource use for 68 species inhabiting dryland steppe communities across northwestern China. We tested predictions from various theoretical frameworks including the leaf economics spectrum, leaf energy balance theory and least-cost optimality theory.

Results

Species on drier or sunnier sites had smaller leaves with higher LMA, higher leaf nitrogen concentration per area (Narea), and a greater drawdown of CO2 during photosynthesis (i.e., lower Ci:Ca) suggesting higher photosynthetic water use efficiency. Leaf nitrogen per mass and plant height (typically < 1.4 m for all species) did not vary with climate or with soil properties. Trait-trait relationships showed little patterning in relation to climate or soil. Traits of forbs were more strongly influenced by environmental properties than those of the shrubs, trees, or grasses sampled.

Conclusion

We investigated variation in plant traits that influence carbon economy, water use and competitive interactions, and found that in dry and low fertility environments, dryland steppe species exhibited a mixture of resource acquisitive (e.g. high Narea) and conservative leaf traits (e.g. high LMA). Our results demonstrate the utility of applying multiple theoretical frameworks to better understand variation in resource use strategies among co-occurring species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be archived in the TRY data repository upon acceptance.

References

  • Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44. https://doi.org/10.1890/03-4022

    Article  Google Scholar 

  • Aerts R, Chapin III FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Advances in Ecological Research, vol. 30. Academic Press, p 1–67

  • Austin AT (2011) Has water limited our imagination for aridland biogeochemistry? Trends Ecol Evol 26:229–235. https://doi.org/10.1016/j.tree.2011.02.003

    Article  PubMed  Google Scholar 

  • Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89:2140–2153

    Article  PubMed  Google Scholar 

  • Bao S (2000) Soil and agricultural chemistry analysis. China Agriculture Press, Beijing

    Google Scholar 

  • Bastin J-F, Berrahmouni N, Grainger A, Maniatis D, Mollicone D, Moore R, Patriarca C, Picard N, Sparrow B, Abraham EM (2017) The extent of forest in dryland biomes. Science 356:635–638

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ, Gross N, Saiz H, Maire V, Lehmann A (2020) Global ecosystem thresholds driven by aridity. Science 367:787–790

    Article  CAS  PubMed  Google Scholar 

  • Blumenthal DM, Mueller KE, Kray JA, Ocheltree TW, Augustine DJ, Wilcox KR (2020) Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: The central roles of phenology and leaf dry matter content. J Ecol 108:2336–2351. https://doi.org/10.1111/1365-2745.13454

    Article  Google Scholar 

  • Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, Botta-Dukát Z, Chytrý M, Field R, Jansen F (2018) Global trait–environment relationships of plant communities. Nat Ecol Evol 2:1906–1917

    Article  PubMed  Google Scholar 

  • Butterfield BJ, Munson SM (2016) Temperature is better than precipitation as a predictor of plant community assembly across a dryland region. J Veg Sci 27:938–947

    Article  Google Scholar 

  • Cao Y, Chen Y (2017) Ecosystem C: N: P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecol Eng 105:125–132

    Article  Google Scholar 

  • Chapin FS (1991) Integrated responses of plants to stress. Bioscience 41:29–36

    Article  Google Scholar 

  • Cherlet M, Hutchinson C, Reynolds J, Hill J, Sommer S, Von Maltitz G (2018) World atlas of desertification: Rethinking land degradation and sustainable land management. Publications Office of the European Union

    Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Cornwell WK, Wright IJ, Turner J, Maire V, Barbour MM, Cernusak LA, Dawson T, Ellsworth D, Farquhar GD, Griffiths H (2018) Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. Glob Ecol Biogeogr 27:1056–1067

    Article  Google Scholar 

  • Curtis JT, McIntosh RP (1951) An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32:476–496

    Article  Google Scholar 

  • Davis TW, Prentice IC, Stocker BD, Thomas RT, Whitley RJ, Wang H, Evans BJ, Gallego-Sala AV, Sykes MT, Cramer W (2017) Simple process-led algorithms for simulating habitats (SPLASH v. 1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci Model Dev 10:689–708

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceição AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676. https://doi.org/10.1038/nature12670

    Article  CAS  PubMed  Google Scholar 

  • Dong N, Prentice IC, Evans BJ, Caddy-Retalic S, Lowe AJ, Wright IJ (2017) Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14(2):481–495

    Article  CAS  Google Scholar 

  • Dong N, Prentice IC, Wright IJ, Evans BJ, Togashi HF, Caddy-Retalic S, McInerney FA, Sparrow B, Leitch E, Lowe AJ (2020) Components of leaf-trait variation along environmental gradients. New Phytol 228:82–94

    Article  CAS  PubMed  Google Scholar 

  • Du J (2016) Individual differences with twig-leaf traits and photosynthesis of Tamarix ramosissma in the Heihe National Nature Reserve of Zhangye. Northwest Normal University, Gansu (in Chinese with English abstract)

    Google Scholar 

  • Evans JR, Clarke VC (2019) The nitrogen cost of photosynthesis. J Exp Bot 70:7–15

    Article  CAS  PubMed  Google Scholar 

  • Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343

    Article  Google Scholar 

  • Fan B, Zhang A, Yang Y, Ma Q, Li X, Zhao C (2016) Long-term effects of xerophytic shrub Haloxylon ammodendron plantations on soil properties and vegetation dynamics in Northwest China. PLoS ONE 11:e0168000

    Article  PubMed  PubMed Central  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol 9(2):121–37

    Article  CAS  Google Scholar 

  • Gross N, Bagousse-Pinguet YL, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT (2017) Functional trait diversity maximizes ecosystem multifunctionality. Nat Ecol Evol 1:1–9

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S, Hothorn MT (2016) Package ‘multcomp’. Simultaneous inference in general parametric models Project for Statistical Computing, Vienna, Austria

  • Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–171. https://doi.org/10.1038/nclimate2837

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation; a system of quantitative pedology. McGraw-Hill, New York, London

    Google Scholar 

  • Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, Wright IJ, Sippel SD, Rüger N, Richter R, Schaepman ME (2022) Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat Ecol Evol 6:36–50

    Article  PubMed  Google Scholar 

  • Kassambara A, Mundt F (2020) Factoextra: extract and visualize the results of multivariate data analyses. R Package Version 1.0.7. https://CRAN.R-project.org/package=factoextra

  • Lambers H, Oliveira R (2019) Plant physiological ecology. Springer Nature Switzerland AG

    Book  Google Scholar 

  • Legendre P, Oksanen J, ter Braak CJ (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277

    Article  Google Scholar 

  • Li L, Chen J, Han X, Zhang W, Shao C (2020) Typical Steppe Ecosystem. In: Li L, Chen J, Han X, Zhang W, Shao C (eds) Grassland ecosystems of China: a synthesis and resume. Springer Singapore, Singapore

    Chapter  Google Scholar 

  • Liu H, Gleason SM, Hao G, Hua L, He P, Goldstein G, Ye Q (2019a) Hydraulic traits are coordinated with maximum plant height at the global scale. Sci Adv 5:eaav1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Bian Z, Zhang K, Ahmad B, Khan A (2019b) Effects of different fencing regimes on community structure of degraded desert grasslands on Mu Us desert, China. Ecol Evol 9:3367–3377

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo W, Li W, Ganjurjav H, Yan Y, Li Y, Cao X, He S, Danjiu L, Gao Q, Hu G (2018) Effects of nitrogen on leaf functional traits and population characteristics of the artificial grassland Elymus nutans in Northern Tibet. Acta Pratacul Sin 27:51–60

    Google Scholar 

  • Maestre FT, Benito BM, Berdugo M, Concostrina-Zubiri L, Delgado-Baquerizo M, Eldridge DJ, Guirado E, Gross N, Kéfi S, Le Bagousse-Pinguet Y (2021) Biogeography of global drylands. New Phytol 231:540–558

    Article  PubMed  Google Scholar 

  • Maestre FT, Eldridge DJ, Soliveres S, Kéfi S, Delgado-Baquerizo M, Bowker MA, García-Palacios P, Gaitán J, Gallardo A, Lázaro R, Berdugo M (2016) Structure and functioning of dryland ecosystems in a changing world. Annu Rev Ecol Evol Syst 47:215–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets Ü, Ordonez A, Reich PB (2015) Global effects of soil and climate on leaf photosynthetic traits and rates. Glob Ecol Biogeogr 24(6):706–717

    Article  Google Scholar 

  • Markesteijn L, Poorter L, Paz H, Sack L, Bongers F (2011) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ 34:137–148

    Article  PubMed  Google Scholar 

  • Midolo G, De Frenne P, Hölzel N, Wellstein C (2019) Global patterns of intraspecific leaf trait responses to elevation. Glob Change Biol 25:2485–2498

    Article  Google Scholar 

  • Moreno-Jiménez E, Plaza C, Saiz H, Manzano R, Flagmeier M, Maestre FT (2019) Aridity and reduced soil micronutrient availability in global drylands. Nat Sustain 2:371–377. https://doi.org/10.1038/s41893-019-0262-x

    Article  PubMed  PubMed Central  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1–25

    Article  Google Scholar 

  • Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469. https://doi.org/10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2

    Article  Google Scholar 

  • Ocheltree TW, Mueller KM, Chesus K, LeCain DR, Kray JA, Blumenthal DM (2020) Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community. Oecologia 192:55–66. https://doi.org/10.1007/s00442-019-04567-x

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2007) The vegan package. Community ecology package 10(631–637):719

    Google Scholar 

  • Ordoñez JC, Van Bodegom PM, Witte J-PM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.x

    Article  Google Scholar 

  • Paillassa J, Wright IJ, Prentice IC, Pepin S, Smith NG, Ethier G, Westerband AC, Lamarque LJ, Wang H, Cornwell WK (2020) When and where soil is important to modify the carbon and water economy of leaves. New Phytol 228:121–135

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 505–537

  • Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE (2016) Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 64:715–716

    Article  Google Scholar 

  • Petrie MD, Bradford JB, Hubbard RM, Lauenroth WK, Andrews CM, Schlaepfer DR (2017) Climate change may restrict dryland forest regeneration in the 21st century. Ecology 98:1548–1559. https://doi.org/10.1002/ecy.1791

    Article  CAS  PubMed  Google Scholar 

  • Prentice IC, Meng T, Wang H, Harrison SP, Ni J, Wang G (2011) Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytol 190:169–180

    Article  CAS  PubMed  Google Scholar 

  • Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014) Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett 17:82–91

    Article  PubMed  Google Scholar 

  • Querejeta JI, Prieto I, Armas C, Casanoves F, Diémé JS, Diouf M, Yossi H, Kaya B, Pugnaire FI, Rusch GM (2022) Higher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland trees. New Phytol 235:1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Read QD, Moorhead LC, Swenson NG, Bailey JK, Sanders NJ (2014) Convergent effects of elevation on functional leaf traits within and among species. Funct Ecol 28:37–45

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci 94:13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruppert JC, Harmoney K, Henkin Z, Snyman HA, Sternberg M, Willms W, Linstädter A (2015) Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob Change Biol 21:1258–1270

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson AH, Richardson SJ, Laughlin DC (2016) Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob Ecol Biogeogr 25:964–978

    Article  Google Scholar 

  • Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP, Chadwick OA (2016) Water balance creates a threshold in soil pH at the global scale. Nature 540:567–569. https://doi.org/10.1038/nature20139

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Vieira IR, de Araújo FS, Zandavalli RB (2013) Shrubs promote nucleation in the Brazilian semi-arid region. J Arid Environ 92:42–45. https://doi.org/10.1016/j.jaridenv.2013.01.009

    Article  Google Scholar 

  • Wang H, Prentice IC, Keenan TF, Davis TW, Wright IJ, Cornwell WK, Evans BJ, Peng C (2017) Towards a universal model for carbon dioxide uptake by plants. Nature Plants 3:734–741. https://doi.org/10.1038/s41477-017-0006-8

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li M, Xu L, Liu C, Yan P, He N (2022) Divergent abiotic stressors drive grassland community assembly of tibet and Mongolia Plateau. Front Plant Sci 12:715730

    Article  PubMed  PubMed Central  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smatr 3– an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259. https://doi.org/10.1111/j.2041-210X.2011.00153.x

    Article  Google Scholar 

  • Westerband AC, Wright IJ, Maire V, Paillassa J, Prentice IC, Atkin OK, Bloomfield KJ, Cernusak LA, Dong N, Gleason SM (2023) Coordination of photosynthetic traits across soil and climate gradients. Glob Change Biol 29:856–873

    Article  CAS  Google Scholar 

  • Whitford WG, Wade EL (2002) Ecology of desert systems. Academic Press, San Diego, Calif.

    Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer

    Book  Google Scholar 

  • Wright IJ, Reich P, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats. Funct Ecol 15:423–434

    Article  Google Scholar 

  • Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J Ecol 90:534–543

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2003) Least-cost input mixtures of water and nitrogen for photosynthesis. Am Nat 161:98–111

    Article  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821. https://doi.org/10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JH, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J (2005) Modulation of leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr 14:411–421

    Article  Google Scholar 

  • Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA (2017) Global climatic drivers of leaf size. Science 357:917–921

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang H, Harrison SP, Prentice IC, Wright IJ, Peng C, Lin G (2019) Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol 221:155–168. https://doi.org/10.1111/nph.15422

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang CH, Wang ZH (2020) Response of natural vegetation to climate in dryland ecosystems: a comparative study between Xinjiang and Arizona. Remote Sens 12. https://doi.org/10.3390/rs12213567

Download references

Funding

Research was funded by the National Natural Science Foundation of China (32201525), the Gansu province’s Key Research and Development Plan (21YF5NA069), the Longyuan Talent Youth Innovation and Entrepreneurship Team project, the Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education (YDZX20216200001007), and the West Light Foundation of the Chinese Academy of Sciences. We thank Jing Lu and Ting Qian for their dedicated assistance during fieldwork and experiments in the lab, and we thank Professor Changming Zhao for providing us the convenience of the use of several instruments, and Ning Dong for assisting us with the derivation of the climate data.

Author information

Authors and Affiliations

Authors

Contributions

B.F. designed the study, collected the data and wrote the first draft. A.W. led the data analysis, revised the first draft and led the writing on subsequent revisions, with significant input from I.W. Data from the field study was also collected by P.G., N.D. D.A., T. T. and X.Z. K. S. provided input regarding the study design. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Baoli Fan.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Augusto Franco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B.F. and A.C.W. are joint first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, B., Westerband, A.C., Wright, I.J. et al. Shifts in plant resource use strategies across climate and soil gradients in dryland steppe communities. Plant Soil 497, 277–296 (2024). https://doi.org/10.1007/s11104-023-06401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06401-z

Keywords

Navigation