Skip to main content
Log in

Responses of the soil microbial community structure to multiple interacting global change drivers in temperate forests

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

The microbial community structure in forest soils is expected to change in response to global environmental change, such as climate warming and nitrogen deposition. Community responses to these environmental changes may further interact with the site’s land-use history and understory light availability. Uncovering the relative importance of these global change drivers is crucial to understand and predict soil microbial communities’ changes.

Methods

A full-factorial in situ mesocosm experiment was conducted and the soil microbiota were analyzed by phospholipid fatty acid and neutral lipid fatty acid. The soils in the mesocosms were sampled from forests with different land-use history, and mesocosms contained typical forest understory plants. The mesocosms were exposed to experimental treatments of warming, nitrogen addition and subcanopy illumination.

Results

Among the treatments, past land-use had the strongest effect shaping the microbial community structure. We found a significantly higher abundance of arbuscular mycorrhizal fungi and Actinobacteria in ancient forests. The soil microbial and plant communities were co-structured in ancient forests, but not in past-agricultural forests. Warming and nitrogen fertilization did not affect the soil microbial community composition, yet illumination resulted in slight changes in soil microbial composition.

Conclusions

Our results underpin the role of land-use legacies in shaping soil microbial communities. The stronger plant-microbe linkages in ancient forest soils compared to post-agricultural secondary forest soils may contribute to a higher resilience against environmental changes. Our results advocate for more multifactor global change experiments that investigate the mechanisms underlying the potential effects of land-use legacies on plant-microbe relationships in forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data related to this manuscript are available on Figshare: https://doi.org/10.6084/m9.figshare.21788738.v1.

References

  • Balasooriya WK, Denef K, Huygens D, Boeckx P (2014) Translocation and turnover of rhizodeposit carbon within soil microbial communities of an extensive grassland ecosystem. Plant Soil 376:61–73

    Article  CAS  Google Scholar 

  • Ballhorn DJ, Schaedler M, Elias JD, Millar JA, Kautz S (2016) Friend or Foe-Light Availability Determines the Relationship between Mycorrhizal Fungi, Rhizobia and Lima Bean (Phaseolus lunatus L.). PloS One 11

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    Article  PubMed  Google Scholar 

  • Barlow KM, Mortensen DA, Drohan PJ (2020) Soil pH influences patterns of plant community composition after restoration with native-based seed mixes. Restor Ecol 28

  • Bartoń, K. (2018). MuMIn: Multi-Model Inference.

    Google Scholar 

  • Bayranvand M, Akbarinia M, Jouzani GS, Gharechahi J, Kooch Y, Baldrian P (2021) Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient. FEMS Microbiol Ecol 97

  • Berkelmann D, Schneider D, Meryandini A, Daniel R (2020) Unravelling the effects of tropical land use conversion on the soil microbiome. Environmen Microbiome 15

  • Bird JA, Herman DJ, Firestone MK (2011) Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biol Biochem 43:718–725

    Article  CAS  Google Scholar 

  • Blondeel H, Perring MP, Berges L, Brunet J, Decocq G, Depauw L, Diekmann M, Landuyt D, Liira J, Maes SL et al (2019) Context-Dependency of Agricultural Legacies in Temperate Forest Soils. Ecosystems 22:781–795

    Article  CAS  Google Scholar 

  • Blondeel H, Perring MP, De Lombaerde E, Depauw L, Landuyt D, Govaert S, Maes SL, Vangansbeke P, De Frenne P, Verheyen K (2020) Individualistic responses of forest herb traits to environmental change. Plant Biology 22:601–614

    Article  PubMed  CAS  Google Scholar 

  • Bochet E, Jose Molina M, Monleon V, Espigares T, Manuel Nicolau J, de Las M, Heras M, Garcia-Fayos P (2021) Interactions of past human disturbance and aridity trigger abrupt shifts in the functional state of Mediterranean holm oak woodlands. Catena 206

  • Boeraeve M, Honnay O, Mullens N, Vandekerkhove K, De Keersmaeker L, Thomaes A, Jacquemyn H (2018) The impact of spatial isolation and local habitat conditions on colonization of recent forest stands by ectomycorrhizal fungi. Forest Ecol Manag 429:84–92

    Article  Google Scholar 

  • Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol Biochem 43:795–803

    Article  CAS  Google Scholar 

  • Chen, Z., Maltz, M.R., Zhang, Y., O'Brien, B.J., Neff, M., Wang, Y., and Cao, J. (2021). Plantations of Cinnamomum camphora (Linn) Presl with Distinct Soil Bacterial Communities Mitigate Soil Acidity within Polluted Locations in Southwest China. Forests, 12

  • Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, van Diepen LTA, Bradford MA (2015) Biotic interactions mediate soil microbial feedbacks to climate change. P Natl Acad Sci USA 112:7033–7038

    Article  CAS  Google Scholar 

  • De Long JR, Dorrepaal E, Kardol P, Nilsson M-C, Teuber LM, Wardle DA (2016) Contrasting Responses of Soil Microbial and Nematode Communities to Warming and Plant Functional Group Removal Across a Post-fire Boreal Forest Successional Gradient. Ecosystems 19:339–355

    Article  Google Scholar 

  • De Schrijver, A., Verheyen, K., Mertens, J., Staelens, J., Wuyts, K., and Muys, B. (2008). Nitrogen saturation and net ecosystem production. Nature, 451, 0-0.

  • Dray S, Dufour A-B (2007) The ade4 Package: Implementing the Duality Diagram for Ecologists. J Stat Softw 22

  • Easlon HM, Bloom AJ (2014) Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci 2

  • Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB (2012) Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biol 18:435–447

    Article  Google Scholar 

  • Fabianska I, Sosa-Lopez E, Bucher M (2019) The role of nutrient balance in shaping plant root-fungal interactions: facts and speculation. Curr Opin Microbiol 49:90–96

    Article  PubMed  CAS  Google Scholar 

  • Falkengren-Grerup U, ten Brink DJ, Brunet J (2006) Land use effects on soil N, P, C and pH persist over 40-80 years of forest growth on agricultural soils. Forest Ecol Manag 225:74–81

    Article  Google Scholar 

  • Fanin N, Bertrand I (2016) Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biol Biochem 94:48–60

    Article  CAS  Google Scholar 

  • Farrell M, Kuhn TK, Macdonald LM, Maddern TM, Murphy DV, Hall PA, Singh BP, Baumann K, Krull ES, Baldock JA (2013) Microbial utilisation of biochar-derived carbon. Sci Total Environ 465:288–297

    Article  PubMed  CAS  Google Scholar 

  • Feng J, He K, Zhang Q, Han M, Zhu B (2022) Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biol 28:3426–3440

    Article  CAS  Google Scholar 

  • Ficano N, Porder S, McCulloch LA (2021) Tripartite legume-rhizobia-mycorrhizae relationship is influenced by light and soil nitrogen in Neotropical canopy gaps. Ecology 102

  • Frostegard A, Tunlid A, Baath E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  CAS  Google Scholar 

  • Grimm NB, Chapin FS III, Bierwagen B, Gonzalez P, Groffman PM, Luo Y, Melton F, Nadelhoffer K, Pairis A, Raymond PA et al (2013) The impacts of climate change on ecosystem structure and function. Front Ecol Environ 11:474–482

    Article  Google Scholar 

  • Holt RD (2008) Theoretical perspectives on resource pulses. Ecology 89:671–681

    Article  PubMed  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Velikova V (2017) Led spectral composition effects on mycorrhizal symbiosis formation with tomato plants. Appl Soil Ecol 120:189–196

    Article  Google Scholar 

  • Ji L, Yang X, Zhu C, Ma L, Chen Y, Ling N, Zhou Z, Ni K, Guo S, Helgason T et al (2022) Land-use changes alter the arbuscular mycorrhizal fungal community composition and assembly in the ancient tea forest reserve. Agr Ecosyst Environ 339

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551

    Article  PubMed  CAS  Google Scholar 

  • Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecol Lett 9:1080–1088

    Article  PubMed  Google Scholar 

  • Kaur S, Suseela V (2020) Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome. Metabolites 10

  • Kowalenko CG (2001) Assessment of Leco CNS-2000 analyzer for simultaneously measuring total carbon, nitrogen, and sulphur in soil. Commun Soil Sci Plan 32:2065–2078

    Article  CAS  Google Scholar 

  • Lajtha K, Driscoll CT, Jarrel WM, Elliott ET (1999) Soil phosphorus - Characterization and total element analysis. Standard Soil Methods for Long-Term Ecological Research, Oxford University Press 2:115–142

    Article  CAS  Google Scholar 

  • Lekberg Y, Baath E, Frostegard A, Hammer E, Hedlund K, Jansa J, Kaiser C, Ramsey PW, Rezanka T, Rousk J et al (2022) Fatty acid 16:1ω5 as a proxy for arbuscular mycorrhizal fungal biomass: current challenges and ways forward. Biol Fert Soils 58:835–842

    Article  CAS  Google Scholar 

  • Liu Y, Mao L, Li J, Shi G, Jiang S, Ma X, An L, Du G, Feng H (2015) Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant Soil 386:341–355

    Article  CAS  Google Scholar 

  • Marri G (2020) Diverging trajectories of forest herb community development in a multi-factor global change experiment. Ghent University, Master thesis

    Google Scholar 

  • Miki T (2012) Microbe-mediated plant-soil feedback and its roles in a changing world. Ecol Res 27:509–520

    Article  CAS  Google Scholar 

  • Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015) Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem 81:244–254

    Article  CAS  Google Scholar 

  • Ngosong C, Gabriel E, Ruess L (2012) Use of the signature fatty acid 16: 1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J Lipids 2012

  • Nguyen J, Lara-Gutierrez J, Stocker R (2021) Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol Rev 45

  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., and others (2017). vegan: Community Ecology Package. R Package Version 2.4-3. 2017.

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Orczewska A (2009) The impact of former agriculture on habitat conditions and distribution patterns of ancient woodland plant species in recent black alder (Alnus glutinosa (L.) Gaertn.) woods in south-western Poland. Forest Ecol Manag 258:794–803

    Article  Google Scholar 

  • Orwin KH, Dickie IA, Holdaway R, Wood JR (2018) A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions. Soil Biol Biochem 117: 27–35

  • Perring MP, De Frenne P, Baeten L, Maes SL, Depauw L, Blondeel H, Caron MM, Verheyen K (2016) Global environmental change effects on ecosystems: the importance of land-use legacies. Global Change Biol 22:1361–1371

    Article  Google Scholar 

  • Quideau SA, McIntosh ACS, Norris CE, Lloret E, Swallow MJB, Hannam K (2016) Extraction and Analysis of Microbial Phospholipid Fatty Acids in Soils. J Vis Exp 114:e54360

    Google Scholar 

  • Reganold JP, Harsh JB (1985) Expressing cation exchange capacity in milliequivalents per 100 grams and in SI units. J Agron Educ 14:84–90

    Article  Google Scholar 

  • Reynolds SG (1970) The gravimetric method of soil moisture determination Part I A study of equipment, and methodological problems. J Hydrol 11:258–273

    Article  Google Scholar 

  • Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang G (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366:886-+

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rinnan R, Michelsen A, Baath E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biol 13:28–39

    Article  Google Scholar 

  • Rui Y, Murphy DV, Wang X, Hoyle FC (2016) Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration. Sci Rep 6

  • Santonja M, Rancon A, Fromin N, Baldy V, Hattenschwiler S, Fernandez C, Montes N, Mirleau P (2017) Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biol Biochem 111:124–134

    Article  CAS  Google Scholar 

  • Selene Gomez-Acata E, Valencia-Becerril I, Valenzuela-Encinas C, Socorro Velasquez-Rodriguez A, Ebenezer Navarro-Noya Y, Montoya-Ciriaco N, Cecilia Suarez-Arriaga M, Rojas-Valdez A, Gabriel Reyes-Reyes B, Luna-Guido M et al (2016) Deforestation and cultivation with maize (zea mays l.) has a profound effect on the bacterial community structure in soil. Land Degrad Dev 27:1122–1130

    Article  Google Scholar 

  • Smith MD, Knapp AK, Collins SL (2009) A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–3289

    Article  PubMed  Google Scholar 

  • Sridhar B, Lawrence GB, Debenport SJ, Fahey TJ, Buckley DH, Wilhelm RC, Goodale CL (2022) Watershed-scale liming reveals the short- and long-term effects of pH on the forest soil microbiome and carbon cycling. Environ Microbiol 24:6184–6199

    Article  PubMed  CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Sun S, Wu Y, Zhang J, Wang G, DeLuca TH, Zhu W, Li A, Duan M, He L (2019) Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau. Geoderma 353:283–292

    Article  CAS  Google Scholar 

  • Team, R.C (2008) R: A language and environment for stastiscal computing. Vienna, Austria, R Foundation for Statistical computing

    Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Jones MD, Schoonmaker AL (2009) Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90:2808–2822

    Article  PubMed  Google Scholar 

  • Unger S, Habermann FM, Schenke K, Jongen M (2021) Arbuscular Mycorrhizal Fungi and Nutrition Determine the Outcome of Competition Between Lolium multiflorum and Trifolium subterraneum. Front Plant Sci 12:778861

    Article  PubMed  PubMed Central  Google Scholar 

  • Valladares F, Niinemets U (2008) Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annu Rev Ecol Evol S 39:237–257

    Article  Google Scholar 

  • van der Plas F (2019) Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev 94:1220–1245

    Article  PubMed  Google Scholar 

  • van Loon MP, Schieving F, Rietkerk M, Dekker SC, Sterck F, Anten NPR (2014) How light competition between plants affects their response to climate change. New Phytol 203:1253–1265

    Article  PubMed  Google Scholar 

  • Veldkamp E, Schmidt M, Powers JS, Corre MD (2020) Deforestation and reforestation impacts on soils in the tropics. Nat Rev Earth Env 1:590–605

    Article  Google Scholar 

  • Vellend M, Verheyen K, Flinn KM, Jacquemyn H, Kolb A, Van Calster H, Peterken G, Graae BJ, Bellemare J, Honnay O et al (2007) Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J Ecol 95:565–573

    Article  Google Scholar 

  • Veresoglou SD, Mamolos AP, Thornton B, Voulgari OK, Sen R, Veresoglou DS (2011) Medium-term fertilization of grassland plant communities masks plant species-linked effects on soil microbial community structure. Plant Soil 344:187–196

    Article  CAS  Google Scholar 

  • Verheyen K, Bossuyt B, Hermy M, Tack G (1999) The land use history (1278-1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–1128

    Article  Google Scholar 

  • Verheyen K, Honnay O, Motzkin G, Hermy M, Foster DR (2003) Response of forest plant species to land-use change: a life-history trait-based approach. J Ecol 91:563–577

    Article  Google Scholar 

  • von Oheimb G, Haerdtle W, Naumann PS, Westphal C, Assmann T, Meyer H (2008) Long-term effects of historical heathland farming on soil properties of forest ecosystems. Forest Ecol Manag 255:1984–1993

    Article  Google Scholar 

  • von Rein I, Gessler A, Premke K, Keitel C, Ulrich A, Kayler ZE (2016) Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. Global Change Biol 22:2861–2874

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, White PJ, Shen J, Lambers H (2022) Linking root exudation to belowground economic traits for resource acquisition. New Phytol 233:1620–1635

    Article  PubMed  CAS  Google Scholar 

  • Wieczynski DJ, Singla P, Doan A, Singleton A, Han Z-Y, Votzke S, Yammine A, Gibert JP (2021) Linking species traits and demography to explain complex temperature responses across levels of organization. P Natl Acad Sci USA 118

  • Willers C, Jansen van Rensburg P, Claassens S (2015) Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications. J Appl Microbiol 119:1207–1218

    Article  PubMed  CAS  Google Scholar 

  • Williams LJ, Cavender-Bares J, Paquette A, Messier C, Reich PB (2020) Light mediates the relationship between community diversity and trait plasticity in functionally and phylogenetically diverse tree mixtures. J Ecol 108:1617–1634

    Article  Google Scholar 

  • Wilson B, Puri G (2001) A comparison of pinewood and moorland soils in the Abernethy Forest Reserve, Scotland. Global Ecol Biogeogr 10:291–303

    Article  Google Scholar 

  • Xi N, Bloor JMG, Wang Y, Chu C (2019) Contribution of conspecific soil microorganisms to tree seedling light responses: Insights from two tropical species with contrasting shade tolerance. Environ Exp Bot 166

  • Xu J, Liu S, Song S, Guo H, Tang J, Yong JWH, Ma Y, Chen X (2018) Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability. Soil Biol Biochem 120:181–190

    Article  CAS  Google Scholar 

  • Xu Y, Seshadri B, Bolan N, Sarkar B, Ok YS, Zhang W, Rumpel C, Sparks D, Farrell M, Hall T (2019) Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environ Int 125:478–488

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Blondeel H, Meeussen C, Govaert S, Vangansbeke P, Boeckx P, Lenoir J, Orczewska A, Ponette Q, Hedwall PO et al (2022a) Forest density and edge effects on soil microbial communities in deciduous forests across Europe. Appl Soil Ecol 179

  • Yang J, Wang Y, Cui X, Xue K, Zhang Y, Yu Z (2019) Habitat filtering shapes the differential structure of microbial communities in the Xilingol grassland. Sci Rep 9

  • Yang M, Fu Y, Zhao R, Koorem K, Li B, Siemann E, Yang Q (2022b) The effects of light availability on plant-soil interactions and salinity tolerance of invasive tree species, Triadica sebifera. Forest Ecol Manag 506

  • Yao F, Yang S, Wang Z, Wang X, Ye J, Wang X, DeBruyn JM, Feng X, Jiang Y, Li H (2017) Microbial Taxa Distribution Is Associated with Ecological Trophic Cascades along an Elevation Gradient. Front Microbiol 8

  • Zhang B, Li Y, Ren T, Tian Z, Wang G, He X, Tian C (2014) Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. Biol Fert Soils 50:1077–1085

    Article  CAS  Google Scholar 

  • Zhang J, Ekblad A, Sigurdsson BD, Wallander H (2020) The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-arctic grassland. Soil Biol Biochem 147:107826

    Article  CAS  Google Scholar 

  • Zhang N, Nunan N, Hirsch PR, Sun B, Zhou J, Liang Y (2021) Theory of microbial coexistence in promoting soil-plant ecosystem health. Biol Fert Soils 57:897–911

    Article  Google Scholar 

  • Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006) Old-Growth Forests Can Accumulate Carbon in Soils. Science 314:1417–1417

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Krashevska V, Widyastuti R, Scheu S, Potapov A (2022) Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel. Elife 11

Download references

Acknowledgement

This work was supported by the European Research Council via ERC Consolidator Grant PASTFORWARD (Number 614839), ERC Starting Grant FORMICA (Number 757833), the FWO Scientific research network FLEUR, China Postdoctoral Science Foundation (Number 2023M733462), and the scholarship provided by the University of Chinese Academy of Sciences (UCAS). We thank Luc Willems and Greet De bruyn during the chemical analyses, as well as Samuel Bodé and Katja Van Nieuland for providing help during the PLFA experiment.

Author information

Authors and Affiliations

Authors

Contributions

J.Y., H.B., P.D.F., and K.V. conceived the ideas and designed methodology; all authors collected data; J.Y. performed statistical analyses; J.Y., with contributions from H.B., P.D.F., and K.V. wrote the paper; all authors discussed the results and commented on the manuscript drafts.

Corresponding author

Correspondence to Jie Yang.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Paul Bodelier.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1831 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Blondeel, H., Boeckx, P. et al. Responses of the soil microbial community structure to multiple interacting global change drivers in temperate forests. Plant Soil 496, 641–656 (2024). https://doi.org/10.1007/s11104-023-06388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06388-7

Keywords

Navigation