Skip to main content

Advertisement

Log in

Contrasting patterns and controls of soil carbon and nitrogen isotope compositions in coastal wetlands of China

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Natural stable isotope compositions of carbon (δ13C) and nitrogen (δ15N) can reveal biogeochemical mechanisms that control ecosystem carbon (C) and nitrogen (N) processes. However, little is known about the latitudinal patterns and controlling mechanisms for soil δ13C and δ15N in coastal wetlands based on a large spatial scale.

Methods

A total of 76 sites of coastal wetlands were sampled along a 5000 km transect across temperate-subtropical-tropical zones to explore biological and environmental controls on soil stable C and N isotopic compositions.

Results

The results showed that soil δ13C (ranging from -27.5‰ to -18.3‰) and δ15N (from 2.66‰ to 9.97‰) varied over a broad geographic scale. The C4-plant (Spartina alterniflora) dominated sites have 2–6‰ higher δ13C values than those of other vegetation types, while mangrove soils have lower δ13C values compared to those of marshes; and soils with vegetated C4-plants and mangroves have 1–3‰ higher δ15N values relative to native grass marshes. There were no significant relationships between mean annual temperature (MAT) or precipitation (MAP) and δ13C, but positive correlations between MAT and δ15N, as well as MAP and δ15N.

Conclusions

Vegetation composition and plant C inputs directly control the spatial variability of δ13C patterns. Simultaneously, climate and edaphic variables (e.g., soil water content, pH, and C availability) are the predominant factors influencing δ15N patterns. These findings provide new insights into soil organic matter turnover and response to climate and environmental changes and improve the prediction of C stability and burial in coastal wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The information supporting this study is available in the Supplementary materials. The original data will be open for researchers on the website of figshare (https://figshare.com/) upon acceptance of the manuscript after peer review.

References

  • Acton P, Fox J, Campbell E, Rowe H, Wilkinson M (2013) Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils. J Geophys Res Biogeosci 118(4):1532–1545

    Article  CAS  Google Scholar 

  • Adame MF, Fry B (2016) Source and stability of soil carbon in mangrove and freshwater wetlands of the Mexican Pacific coast. Wetlands Ecol Manage 24:129–137

    Article  CAS  Google Scholar 

  • Amundson R, Austin AT, Schuur EA, Yoo K, Matzek V, Kendall C, ..., Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17(1):1031

  • An H, Li G (2015) Effects of grazing on carbon and nitrogen in plants and soils in a semiarid desert grassland, China. J Arid Land 7(3):341–349

    Article  Google Scholar 

  • Andrews M, James EK, Sprent JI, Boddey RM, Gross E, dos Reis Jr FB (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecolog Divers 4(2–3):131–140

    Article  Google Scholar 

  • Bai E, Boutton TW, Liu F, Wu XB, Hallmark CT, Archer SR (2012) Spatial variation of soil δ13C and its relation to carbon input and soil texture in a subtropical lowland woodland. Soil Biol Biochem 44(1):102–112

    Article  CAS  Google Scholar 

  • Baisden WT, Amundson R, Brenner DL, Cook AC, Kendall C, Harden JW (2002) A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence. Glob Biogeochem Cycles 16(4):1135

    Article  Google Scholar 

  • Bass AM, O’Grady D, Berkin C, Leblanc M, Tweed S, Nelson PN, Bird MI (2013) High diurnal variation in dissolved inorganic C, δ13C values and surface efflux of CO2 in a seasonal tropical floodplain. Environ Chem Lett 11(4):399–405

    Article  CAS  Google Scholar 

  • Bauer JE, Cai WJ, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PA (2013) The changing carbon cycle of the coastal ocean. Nature 504(7478):61–70

    Article  CAS  PubMed  Google Scholar 

  • Bernal B, Megonigal JP, Mozdzer TJ (2017) An invasive wetland grass primes deep soil carbon pools. Glob Chang Biol 23(5):2104–2116

    Article  PubMed  Google Scholar 

  • Bianchi TS, Allison MA, Zhao J, Li X, Comeaux RS, Feagin RA, Kulawardhana RW (2013) Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuar Coast Shelf Sci 119:7–16

    Article  CAS  Google Scholar 

  • Bolan NS, Saggar S, Luo J, Bhandral R, Singh J (2004) Gaseous emissions of nitrogen from grazed pastures: processes, measurements and modeling, environmental implications, and mitigation. Adv Agron 84(37):120

    Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75(2):139–157

    Article  Google Scholar 

  • Bouillon S, Connolly RM, Lee SY (2008) Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. J Sea Res 59(1–2):44–58

    Article  CAS  Google Scholar 

  • Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262

    Article  CAS  Google Scholar 

  • Breeuwer A, Heijmans M, Robroek BJ, Limpens J, Berendse F (2008) The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos 117(8):1258–1268

    Article  CAS  Google Scholar 

  • Britton K, Müldner G, Bell M (2008) Stable isotope evidence for salt-marsh grazing in the Bronze Age Severn Estuary, UK: implications for palaeodietary analysis at coastal sites. J Archaeol Sci 35(8):2111–2118

    Article  Google Scholar 

  • Broek MVD, Temmerman S, Merckx R, Govers G (2016) Controls on soil organic carbon stocks in tidal marshes along an estuarine salinity gradient. Biogeosciences 13(24):6611–6624

    Article  Google Scholar 

  • Bruland GL, MacKenzie RA (2010) Nitrogen source tracking with δ15N content of coastal wetland plants in Hawaii. J Environ Qual 39(1):409–419

    Article  CAS  PubMed  Google Scholar 

  • Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, ..., Reichstein M (2014) Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514(7521):213–217

  • Cernusak LA, Ubierna N, Winter K, Holtum JA, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200(4):950–965

    Article  CAS  PubMed  Google Scholar 

  • Chaopricha NT, Marín-Spiotta E (2014) Soil burial contributes to deep soil organic carbon storage. Soil Biol Biochem 69:251–264

    Article  CAS  Google Scholar 

  • Chaudhari PR, Ahire DV, Ahire VD, Chkravarty M, Maity S (2013) Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int J Sci Res Publ 3(2):1–8

    CAS  Google Scholar 

  • Chaudhary DR, Seo J, Kang H, Rathore AP, Jha B (2018) Seasonal variation in natural abundance of δ13C and 15N in Salicornia brachiata Roxb. populations from a coastal area of India. Isot Environ Health Stud 54(2):209–224

    Article  CAS  Google Scholar 

  • Cheng X, Luo Y, Chen J, Lin G, Chen J, Li B (2006) Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biol Biochem 38(12):3380–3386

    Article  CAS  Google Scholar 

  • Choi WJ, Kwak JH, Park HJ, Yang HI, Park SI, Xu Z, ..., Chang SX (2020) Land-use type, and land management and disturbance affect soil δ15N: a review. J Soils Sediments 20(9):3283–3299

  • Choi Y, Wang Y, Hsieh YP, Robinson L (2001) Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: evidence from carbon isotopes. Glob Biogeochem Cycles 15(2):311–319

    Article  CAS  Google Scholar 

  • Clair TA, Arp P, Moore TR, Dalva M, Meng FR (2002) Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate. Environ Pollut 116:S143–S148

    Article  CAS  PubMed  Google Scholar 

  • Cloern JE, Canuel EA, Harris D (2002) Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnol Oceanogr 47(3):713–729

    Article  CAS  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MP, Bustamante M, Dawson TE, Hobbie EA., ..., Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183(4):980–992

  • Cristea G, Cuna SM, Fărcaş S, Tanţău I, Dordai E, Măgdaş DA (2014) Carbon isotope composition as indicator for climatic changes during the middle and late Holocene in a peat bog from Maramureş Mountains (Romania). Holocene 24(1):15–23

    Article  Google Scholar 

  • D’Andrea R, Ostling A (2016) Challenges in linking trait patterns to niche differentiation. Oikos 125(10):1369–1385

    Article  Google Scholar 

  • Denk TR, Mohn J, Decock C, Lewicka-Szczebak D, Harris E, Butterbach-Bahl K, ..., Wolf B (2017) The nitrogen cycle: a review of isotope effects and isotope modeling approaches. Soil Biol Biochem 105:121–137

  • Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2015) Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Chang Biol 21(1):388–395

    Article  PubMed  Google Scholar 

  • Ding Y, Wang D, Zhao G, Chen S, Sun T, Sun H, ... Chen Z (2023) The contribution of wetland plant litter to soil carbon pool: decomposition rates and priming effects. Environ Res 224:115575

  • Dong S, Li Y, Zhao Z, Li Y, Liu S, Zhou H, ..., Yang M (2018) Land degradation enriches soil δ13C in alpine steppe and soil δ15N in alpine desert by changing plant and soil features on Qinghai‐Tibetan Plateau. Soil Sci Soc Am J 82(4):960–968

  • Drollinger S, Kuzyakov Y, Glatzel S (2019) Effects of peat decomposition on δ13C and δ15N depth profiles of Alpine bogs. CATENA 178:1–10

    Article  CAS  Google Scholar 

  • Feng X, Feakins SJ, Liu Z, Ponton C, Wang RZ, Karkabi E, ..., West AJ (2016a) Source to sink: Evolution of lignin composition in the Madre de Dios River system with connection to the Amazon basin and offshore. J Geophys Res: Biogeosci 121(5):1316–1338

  • Feng ZX, Gao JH, Chen L, Wang YP, Gao JH, Bai FL (2016b) Impact of Spartina alterniflora biomass variation on content and sources of organic carbon fractions in salt marshes: a case study of tidal salt marsh of wanggang estuary, jiangsu province. Geochimica 45(1):87–97

    CAS  Google Scholar 

  • Fu CC, Li Y, Zeng L, Zhang HB, Tu C, Zhou Q et al (2021) Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Glob Chang Biol 27:202–214

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Yang G, Ou W (2005) Analyzing and quantitatively evaluating the organic matter source at different ecologic zones of tidal salt marsh, North Jiangsu Province, China. Environ Sci 26(6):81–88

    Google Scholar 

  • Girkin NT, Vane CH, Cooper HV, Moss-Hayes V, Craigon J, Turner BL, ..., Sjögersten S (2019) Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142(2):231–245

  • Hall SA, Penner WL (2013) Stable carbon isotopes, C3–C4 vegetation, and 12,800 years of climate change in central New Mexico, USA. Palaeogeogr Palaeoclimatol Palaeoecol 369:272–281

    Article  Google Scholar 

  • Han G, Hao X, Zhao M, Wang M, Ellert BH, Willms W, Wang M (2008) Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agr Ecosyst Environ 125(1–4):21–32

    Article  CAS  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. Tansley Review No. 95. New Phytol 137(2):179–203

    Article  PubMed  Google Scholar 

  • Hossain MZ, Okubo A, Sugiyama SI (2010) Effects of grassland species on decomposition of litter and soil microbial communities. Ecol Res 25(2):255–261

    Article  Google Scholar 

  • Hu Y, Jin Z, Hu Q, Hu J, Ni C, Li F (2020) Using stable isotopes to identify nitrogen transformations and estimate denitrification in a semi-constructed wetland. Sci Total Environ 720:137628

    Article  CAS  PubMed  Google Scholar 

  • Huygens D, Trimmer M, Rütting T, Müller C, Heppell CM, Lansdown K, Boeckx P (2013) Biogeochemical nitrogen cycling in wetland ecosystems: Nitrogen-15 isotope techniques. Methods in Biogeochemistry of Wetlands 10:553–591

    Google Scholar 

  • Jex CN, Pate GH, Blyth AJ, Spencer RG, Hernes PJ, Khan SJ, Baker A (2014) Lignin biogeochemistry: from modern processes to Quaternary archives. Quatern Sci Rev 87:46–59

    Article  Google Scholar 

  • Kelleway JJ, Trevathan-Tackett SM, Baldock J, Critchley LP (2022) Plant litter composition and stable isotope signatures vary during decomposition in blue carbon ecosystems. Biogeochemistry 158(2):147–165

    Article  CAS  Google Scholar 

  • Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, Middelburg JJ (2010) Seagrass sediments as a global carbon sink: Isotopic constraints. Glob Biogeochem Cycles 24(4):GB4026

    Article  Google Scholar 

  • Krauss KW, Allen JA, Cahoon DR (2003) Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar Coast Shelf Sci 56(2):251–259

    Article  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89(2):201–219

    Article  CAS  Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci Rev 75(1–4):29–57

    Article  CAS  Google Scholar 

  • Lerch TZ, Nunan N, Dignac MF, Chenu C, Mariotti A (2011) Variations in microbial isotopic fractionation during soil organic matter decomposition. Biogeochemistry 106(1):5–21

    Article  CAS  Google Scholar 

  • Li C, Peng F, Lai C, Xue X, You Q, Chen X, ..., Wang T (2021) Plant community changes determine the vegetation and soil δ13C and δ15N enrichment in degraded alpine grassland. Land Degrad Dev 32(7):2371–2382

  • Li HC (2020) The δ13C, δ15N in mangrove leaves and their mesophyll conductance in response to environmental factors. Master Dissertation, Shenzhen University

  • Li Y, Zhang H, Tu C, Fu C, Xue Y, Luo Y (2016) Sources and fate of organic carbon and nitrogen from land to ocean: Identified by coupling stable isotopes with C/N ratio. Estuar Coast Shelf Sci 181:114–122

    Article  CAS  Google Scholar 

  • Liao JD, Boutton TW, Jastrow JD (2006) Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural 13C and 15N. Soil Biol Biochem 38(11):3197–3210

    Article  CAS  Google Scholar 

  • Liu M, Han G (2022) Stable nitrogen and carbon isotope compositions in plant-soil systems under different land-use types in a red soil region, Southeast China. Peerj 10:e13558

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu H, Wu N, Gu Z, Guo Z, Wang L, Wu H, ..., Liu T (2004) Distribution of carbon isotope composition of modern soils on the Qinghai-Tibetan Plateau. Biogeochemistry 70(2):275–299

  • Lu R (2000) Analytical methods of soil agrochemistry. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review. Eur J Soil Sci 57(4):426–445

    Article  Google Scholar 

  • Ma XX (2012) Isotopic characteristics of organic nitrogen in surface water, surface sediments and plants in Tianjin and their environmental significance. Master Dissertation, Tianjin Normal University

  • McLauchlan KK, Ferguson CJ, Wilson IE, Ocheltree TW, Craine JM (2010) Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands. New Phytol 187(4):1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Williams RJ, Farquhar GD (2001) Carbon isotope discrimination by a sequence of Eucalyptus species along a subcontinental rainfall gradient in Australia. Funct Ecol 15(2):222–232

    Article  Google Scholar 

  • Monteiro FF, Cordeiro RC, Santelli RE, Machado W, Evangelista H, Villar LS, ..., Bidone ED (2012) Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality. Environ Earth Sci 65(6):1661–1669

  • Nel JA, Craine JM, Cramer MD (2018) Correspondence between δ13C and δ15N in soils suggests coordinated fractionation processes for soil C and N. Plant Soil 423(1):257–271

    Article  CAS  Google Scholar 

  • Ogrinc N, Fontolan G, Faganeli J, Covelli S (2005) Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): indicators of sources and preservation. Mar Chem 95(3–4):163–181

    Article  CAS  Google Scholar 

  • Park HJ, Baek N, Lim SS, Jeong YJ, Seo BS, Kwak JH, ..., Choi WJ (2022) Coupling of δ13C and δ15N to understand soil organic matter sources and C and N cycling under different land-uses and management: a review and data analysis. Biol Fertil Soils:1–13

  • Pereira MAG, Domingos M, da Silva EA, Aragaki S, Ramon M, de Camargo PB, Ferreira ML (2022) Isotopic composition (δ13C and δ15N) in the soil-plant system of subtropical urban forests. Sci Total Environ 851:158052

    Article  CAS  PubMed  Google Scholar 

  • Peri PL, Ladd B, Pepper DA, Bonser SP, Laffan SW, Amelung W (2012) Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests. Glob Chang Biol 18(1):311–321

    Article  Google Scholar 

  • Ranjan RK, Routh J, Ramanathan AL, Klump JV (2011) Elemental and stable isotope records of organic matter input and its fate in the Pichavaram mangrove–estuarine sediments (Tamil Nadu, India). Mar Chem 126(1–4):163–172

    Article  CAS  Google Scholar 

  • Reinhardt M, Müller B, Gächter R, Wehrli B (2006) Nitrogen removal in a small constructed wetland: an isotope mass balance approach. Environ Sci Technol 40(10):3313–3319

    Article  CAS  PubMed  Google Scholar 

  • Rejmánková E, Houdková K (2006) Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality? Biogeochemistry 80:245–262

    Article  Google Scholar 

  • Rovira P, Ramón Vallejo V (2007) Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39(1):202–215

    Article  CAS  Google Scholar 

  • Ru N, Yang X, Song Z, Liu H, Hao Q, Liu X, Wu X (2018) Phytoliths and phytolith carbon occlusion in aboveground vegetation of sandy grasslands in eastern Inner Mongolia, China. Sci Total Environ 625:1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Sapkota Y, White JR (2019) Marsh edge erosion and associated carbon dynamics in coastal Louisiana: A proxy for future wetland-dominated coastlines world-wide. Estuar Coast Shelf Sci 226:106289

    Article  CAS  Google Scholar 

  • Sasmito SD, Kuzyakov Y, Lubis AA, Murdiyarso D, Hutley LB, Bachri S, ..., Borchard N (2020) Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena 187:104414

  • Schimann H, Ponton S, Hättenschwiler S, Ferry B, Lensi R, Domenach AM, Roggy JC (2008) Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol Biochem 40(2):487–494

    Article  CAS  Google Scholar 

  • Shang B, Wu Y, Jiang Z, Liu S, Huang X (2021) Characteristics and sources of organic matter in sediments in the Pearl River Estuary: carbon storage implications. J Trop Oceanogr

  • Sharma N, Kumar S (2022) Control of regional climate on carbon and nitrogen turnover and their stable isotopic compositions in Indian soils. Geoderma Reg 30:e00539

    Article  Google Scholar 

  • Sheng W, Yu G, Fang H, Liu Y, Wang Q, Chen Z, Zhang L (2014) Regional patterns of 15N natural abundance in forest ecosystems along a large transect in eastern China. Sci Rep 4(1):1–6

    Article  Google Scholar 

  • Shi RL, Zhang QF, Li M, Li QQ, Zhang MM (2022) Application of plant carbon isotope fractionation in the study of water use efficiency. Chin Agric Sci Bull 38(23):15–20

    Google Scholar 

  • Shi Y, Wang Y, Ma Y, Ma W, Liang C, Flynn DFB, ..., He JS (2014) Field-based observations of regional-scale, temporal variation in net primary production in Tibetan alpine grasslands. Biogeosciences 11(7):2003–2016

  • Singh M, Sarkar B, Sarkar S, Churchman J, Bolan N, Mandal S, ..., Beerling DJ (2018) Stabilization of soil organic carbon as influenced by clay mineralogy. Adv Agron 148:33–84

  • Soper FM, Richards AE, Siddique I, Aidar MP, Cook GD, Hutley LB, ..., Schmidt S (2015) Natural abundance (δ15N) indicates shifts in nitrogen relations of woody taxa along a savanna–woodland continental rainfall gradient. Oecologia 178(1):297–308

  • Sreelekshmi S, Harikrishnan M, Nandan SB, Kaimal VS, Hershey NR (2022) Ecosystem carbon stock and stable isotopic signatures of soil organic carbon sources across the mangrove ecosystems of Kerala, Southern India. Wetlands 42(4):29

    Article  Google Scholar 

  • Srivastava J, Kalra SJ, Naraian R (2014) Environmental perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel. Appl Water Sci 4(3):193–202

    Article  CAS  Google Scholar 

  • Steinmuller HE, Chambers LG (2019) Characterization of coastal wetland soil organic matter: Implications for wetland submergence. Sci Total Environ 677:648–659

    Article  CAS  PubMed  Google Scholar 

  • Stevenson BA, Parfitt RL, Schipper LA, Baisden WT, Mudge P (2010) Relationship between soil δ15N, C/N and N losses across land uses in New Zealand. Agr Ecosyst Environ 139(4):736–741

    Article  CAS  Google Scholar 

  • Su B, Han XG, Li LH, Huang JH, Bai YF, Qu CM (2000) Responses of δ13C value and water use effieicency of plant species to environmental gradients along the grassland zone of Northeast China transect. Chin J Plant Ecol 24(6):648–655

    Google Scholar 

  • Suess HE (1955) Radiocarbon concentration in modern wood. Science 122:415–417

    Article  CAS  Google Scholar 

  • Tian Y, Yan C, Wang Q, Ma W, Yang D, Liu J, Lu H (2020) Glomalin-related soil protein enriched in δ13C and δ15N excels at storing blue carbon in mangrove wetlands. Sci Total Environ 732:138327

    Article  CAS  PubMed  Google Scholar 

  • Troxler TG, Richards JH (2009) δ13C, δ15N, carbon, nitrogen and phosphorus as indicators of plant ecophysiology and organic matter pathways in Everglades deep slough, Florida, USA. Aquat Bot 91(3):157–165

    Article  CAS  Google Scholar 

  • Upton A, Vane CH, Girkin N, Turner BL, Sjögersten S (2018) Does litter input determine carbon storage and peat organic chemistry in tropical peatlands? Geoderma 326:76–87

    Article  CAS  Google Scholar 

  • van Groenigen JW, van Kessel C (2002) Salinity-induced patterns of natural abundance carbon-13 and nitrogen-15 in plant and soil. Soil Sci Soc Am J 66(2):489–498

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  • Vaughn DR, Bianchi TS, Shields MR, Kenney WF, Osborne TZ (2021) Blue carbon soil stock development and estimates within northern Florida wetlands. Front Earth Sci 9:6

    Article  Google Scholar 

  • Voss M, Bange HW, Dippner JW, Middelburg JJ, Montoya JP, Ward B (2013) The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philos Trans R Soc B: Biol Sci 368(1621):20130121

    Article  Google Scholar 

  • Wang C, Wang X, Liu D, Wu H, Lü X, Fang Y, ..., Bai E (2014) Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat Commun 5(1):1–8

  • Wang C, Wei H, Liu D, Luo W, Hou J, Cheng W, ..., Bai E (2017) Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant Soil 417(1):43–52

  • Wang D, Zhang R, Xiong J, Guo HQ, Zhao B (2015a) Contribution of invasive species Spartina alterniflora to soil organic carbon pool in coastal wetland: stable isotope approach. Chin J Plant Ecol 39(10):941

    Article  Google Scholar 

  • Wang W, Ma Y, Xu J, Wang H, Zhu J, Zhou H (2012) The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau. Sci China Earth Sci 55(10):1688–1695

    Article  CAS  Google Scholar 

  • Wang W, Sardans J, Wang C, Zeng C, Tong C, Chen G, ..., Peñuelas J (2019) The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China. Glob Chang Biol 25(2):733–743

  • Wang X, Wang J, Xu M, Zhang W, Fan T, Zhang J (2015b) Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon. Sci Rep 5(1):1–12

    Google Scholar 

  • Waring EF, Maricle BR (2012) Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding. Environ Exp Bot 77:77–86

    Article  CAS  Google Scholar 

  • Wei L, Yan C, Ye B, Guo X (2008) Effects of salinity on leaf δ13C in three dominant mangrove species along salinity gradients in an estuarine wetland, Southeast China. J Coastal Res 24(1):267–272

    Article  CAS  Google Scholar 

  • Werth M, Kuzyakov Y (2010) 13C fractionation at the root–microorganisms–soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42(9):1372–1384

    Article  CAS  Google Scholar 

  • West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21(7):408–414

    Article  PubMed  Google Scholar 

  • Wohlfarth B, Klubseang W, Inthongkaew S, Fritz SC, Blaauw M, Reimer PJ, ..., Chawchai S (2012) Holocene environmental changes in northeast Thailand as reconstructed from a tropical wetland. Glob Planet Chang 92:148–161

  • Wu J, Song M, Ma W, Zhang X, Shen Z, Tarolli P, ... Tietjen B (2019) Plant and soil’s δ15N are regulated by climate, soil nutrients, and species diversity in alpine grasslands on the northern Tibetan Plateau. Agric Ecosys Environ 281:111–123

  • Wu Y, Zhang X, Song Z, Yu C, Liu M, Wang Y, ..., Wang X (2022) Climatic controls on stable carbon and nitrogen isotope compositions of temperate grasslands in northern China. Plant Soil:1–12

  • Xia S, Song Z, Li Q, Guo L, Yu C, Singh BP, ..., Wang H (2021a) Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ13C‐δ15N, and lignin biomarker. Glob Chang Biol 27(2):417–434

  • Xia S, Song Z, Van Zwieten L, Guo L, Yu C, Wang W, ..., Wang H (2022) Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China. Glob Chang Biol 28(20):6065–6085

  • Xia S, Song Z, Wang W, Fan Y, Guo L, Van Zwieten L, ... Wang H (2023) Patterns and determinants of plant‐derived lignin phenols in coastal wetlands: implications for organic C accumulation. Funct Ecol 37:1067–1081

  • Xia S, Song Z, Wang Y, Wang W, Fu X, Singh BP, ..., Wang H (2021b) Soil organic matter turnover depending on land use change: Coupling C/N ratios, δ13C, and lignin biomarkers. Land Degrad Dev 32(4):1591–1605

  • Xia S, Wang W, Song Z, Kuzyakov Y, Guo L, Van Zwieten L, ..., Wang H (2021c) Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Glob Chang Biol 27(8):1627–1644

  • Xiong Y, Liao B, Proffitt E, Guan W, Sun Y, Wang F, Liu X (2018) Soil carbon storage in mangroves is primarily controlled by soil properties: A study at Dongzhai Bay, China. Sci Total Environ 619:1226–1235

    Article  PubMed  Google Scholar 

  • Xu X, Ouyang H, Richter A, Wanek W, Cao G, Kuzyakov Y (2011) Spatio-temporal variations determine plant–microbe competition for inorganic nitrogen in an alpine meadow. J Ecol 99(2):563–571

    CAS  Google Scholar 

  • Yang RM (2019) Interacting effects of plant invasion, climate, and soils on soil organic carbon storage in coastal wetlands. J Geophys Res Biogeosci 124(8):2554–2564

    Article  CAS  Google Scholar 

  • Yang W, Zhao H, Leng X, Cheng X, An S (2017) Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China. CATENA 156:281–289

    Article  CAS  Google Scholar 

  • Yang Y, Ji C, Chen L, Ding J, Cheng X, Robinson D (2015) Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau. Funct Ecol 29(6):839–848

    Article  Google Scholar 

  • Yang Y, Ji C, Robinson D, Zhu B, Fang H, Shen H, Fang J (2013) Vegetation and soil 15N natural abundance in alpine grasslands on the Tibetan Plateau: patterns and implications. Ecosystems 16(6):1013–1024

    Article  CAS  Google Scholar 

  • Zhang G, Bai J, Zhao Q, Jia J, Wang X, Wang W, Wang X (2021) Soil carbon storage and carbon sources under different Spartina alterniflora invasion periods in a salt marsh ecosystem. CATENA 196:104831

    Article  CAS  Google Scholar 

  • Zhang M, Jiang M, Fu X, Lv Z, Zheng L (2014) The source of organic matter in the sediment of Laizhou Bay. Oceanol Limnol Sin 45(4):741–746

    Google Scholar 

  • Zhang Y, Huang X, Zhang Z, Blewett J, Naafs BDA (2022) Spatiotemporal dynamics of dissolved organic carbon in a subtropical wetland and their implications for methane emissions. Geoderma 419:115876

    Article  CAS  Google Scholar 

  • Zhou L, Song MH, Wang SQ, Fan JW, Liu JY, Zhong HP, …, Song T (2014) Patterns of soil 15N and total N and their relationships with edaphic properties on the Qinghai-Tibetan Plateau. Pedosphere 24:232–242

  • Zhou S, Wu J, Bi X (2020) Spatial characteristics of soil δ13C and δ15N reveal shrub-induced successional process in a coastal wetland. Estuar Coast Shelf Sci 236:106621

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20221028) and National Natural Science Foundation of China (42141014, 41930862, and 42225101). We thank Yuchuan Fan for helping us revise and improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoliang Song.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Responsible Editor: Eric Paterson.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 552 KB)

Supplementary file2 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, S., Song, Z., Singh, B.P. et al. Contrasting patterns and controls of soil carbon and nitrogen isotope compositions in coastal wetlands of China. Plant Soil 489, 483–505 (2023). https://doi.org/10.1007/s11104-023-06034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06034-2

Keywords

Navigation