Skip to main content

Advertisement

Log in

Uptake of organic nitrogen by coastal wetland plants under elevated CO2

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study was conducted to answer the question of whether elevated CO2 and the presence or absence of inorganic nitrogen (NH4+) affect the uptake of different forms of organic nitrogen in two dominant saltmarsh species Schoenoplectus americanus and Spartina patens.

Methods

S. americanus and S. patens were grown under elevated and ambient CO2 conditions and a series of hydroponic assays were conducted using dual labelled 13C15N– glycine, glutamic acid and urea supplied in both the absence and presence of NH4+.

Results

Results show rates of glycine and urea uptake were lower under elevated CO2 conditions for both species. Ratios of 13C and 15N in S. patens roots showed that at least 68 and 79% of glycine under ambient and elevated CO2, respectively, was taken up intact. Provision of NH4+ with organic N caused organic N uptake rates to decline by up to 75% in S. americanus and up to 50% in S. patens compared with plants that only received organic N.

Conclusions

The reduction in organic N uptake in the presence of NH4+ suggests that plants rely primarily on mineral N in the field. In addition, we can deduce that organic N uptake is not likely to supply plants with the additional N required under elevated CO2, and that the repressive effects of elevated CO2 on organic N uptake may have negative consequences for ecosystem productivity and carbon sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecol 35:786–796

    Google Scholar 

  • Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84:1277–1287

    Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143:134–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom AJ, Burger M, Rubio-Asensio JS, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903

    CAS  PubMed  Google Scholar 

  • Bloom AJ, Rubio-Asensio JS, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA (2012) CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 93:355–367

    PubMed  Google Scholar 

  • Chapin FS III, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150

    CAS  Google Scholar 

  • Chen J, Carrillo Y, Pendall E, Dijkstra FA, Evans RD, Morgan JA, Williams DG (2015) Soil microbes compete strongly with plants for soil inorganic and amino acid nitrogen in a semiarid grassland exposed to elevated CO2 and warming. Ecosystems 18(5):867–880

    CAS  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17(4):1111

    Google Scholar 

  • Christiansen NH, Andersen FØ, Jensen HS (2016) Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique. Aquat Bot 128:58–67

    CAS  Google Scholar 

  • Cooke JC, Butler RH, Madole G (1993) Some observations on the vertical distribution of vesicular arbuscular mycorrhizas in roots of salt marsh grasses growing in saturated soils. Mycologia 84:547–550

    Google Scholar 

  • Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Chang Biol 4:43–54

    Google Scholar 

  • Cott GM, Caplan JS, Mozdzer TJ (2018) Nitrogen uptake kinetics and saltmarsh plant responses to global change. Sci Rep 8:5393

    PubMed  PubMed Central  Google Scholar 

  • Craine JM, Elmore AJ, Wang L, Aranibar J, Bauters M, Boeckx P, Crowley BE, Dawes MA, Delzon S, Fajardo A, Fang Y, Fujiyoshi L, Gray A, Guerrieri R, Gundale MJ, Hawke DJ, Hietz P, Jonard M, Kearsley E, Kenzo T, Makarov M, Marañón-Jiménez S, McGlynn T, McNeil B, Mosher SG, Nelson DM, Peri PL, Roggy JC, Sanders-DeMott R, Song M, Szpak P, Templer PH, van der Colff D, Werner C, Xu X, Yang Y, Yu G, Zmudczyńska-Skarbek K (2018) Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat Ecol Evol 2:1735–1744

    PubMed  Google Scholar 

  • Curtis PS, Drake BG, Whigham DF (1989) Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated CO2 in situ. Oecologia 78:297–301

    CAS  PubMed  Google Scholar 

  • Czaban W, Jämtgård S, Näsholm T, Rasmussen J, Nicolaisen M, Fomsgaard IS (2016) Direct acquisition of organic N by white clover even in the presence of inorganic N. Plant Soil 407:91–107

    CAS  Google Scholar 

  • De Groot R, Stuip M, Finlayson M, Davidson N (2006) Valuing wetlands: guidance for valuing the benefits derived from wetland ecosystem services. Research reports no. H039735, International Water Management Institute

  • Drake BG (2014) Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study. Glob Chang Biol 20:3329–3343

    PubMed  Google Scholar 

  • Epstein E, Schmid E, Rains D (1963) Significance and technique of short-term experiments on solute absorption by plant tissue. Plant Cell Physiol 4:79–84

    CAS  Google Scholar 

  • Erickson JE, Peresta G, Montovan K, Drake BG (2013) Direct and indirect effects of elevated atmospheric CO2 on annual net carbon exchange in a Chesapeake Bay tidal wetland. Glob Chang Biol 19:3368–3378

    PubMed  Google Scholar 

  • Falkengren-Grerup U, Mansson KF, Olsson MO (2000) Uptake capacity of amino acids by ten grasses and forbs in relation to soil acidity and nitrogen availability. Environ Exp Bot 4:207–219

    Google Scholar 

  • Feng Z, Rütting T, Pleijel H, Wallin G, Reich PB, Kammann CI, Newton PC, Kobayashi K, Luo Y, Uddling J (2015) Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob Chang Biol 21:3152–3168

    PubMed  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci USA 104:14014–14019

    CAS  PubMed  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505

    CAS  Google Scholar 

  • Franklin O, Cambui CA, Gruffman L, Palmroth S, Oren R, Näsholm T (2017) The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants. Plant Cell Environ 40:25–35

    CAS  PubMed  Google Scholar 

  • Gerz M, Guillermo Bueno C, Ozinga WA, Zobel M, Moora M (2018) Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J Ecol 106:254–264

    CAS  Google Scholar 

  • Gifford RM, Barrett DJ, Lutze JL (2000) The effects of elevated [CO2] on the C: N and C: P mass ratios of plant tissues. Plant Soil 224:1–14

    CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Google Scholar 

  • Glass AD, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    CAS  PubMed  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    CAS  PubMed  Google Scholar 

  • Harrison KA, Bol R, Bardgett RD (2007) Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–999

    PubMed  Google Scholar 

  • Hauck RD, Bremner JM (1976) Use of tracers for soil and fertilizer nitrogen research. Adv Agron 28:219–266

    Google Scholar 

  • Henry H, Jefferies R (2003a) Interactions in the uptake of amino acids, ammonium and nitrate ions in the Arctic salt-marsh grass, Puccinellia phryganodes. Plant Cell Environ 26:419–428

    CAS  Google Scholar 

  • Henry H, Jefferies R (2003b) Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh. J Ecol 91:627–636

    CAS  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinat M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoefnagels MH, Broome SW, Shafer SR (1993) Vesicular-arbuscular mycorrhizas in salt marshes in North Carolina. Estuaries 16:851–858

    Google Scholar 

  • Hofmockel KS, Schlesinger WH, Jackson RB (2007) Effects of elevated atmospheric carbon dioxide on amino acid and NH4+-N cycling in a temperate pine ecosystem. Glob Chang Biol 13:1950–1959

    Google Scholar 

  • Huang W, Houlton BZ, Marklein AR, Liu J, Zhou G (2015) Plant stoichiometric responses to elevated CO2 vary with nitrogen and phosphorus inputs: evidence from a global-scale meta-analysis. Sci Rep 5(18):225

    Google Scholar 

  • Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–357

    PubMed  Google Scholar 

  • Jin VL, Evans R (2010) Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata. Oecologia 163:257–266

    PubMed  Google Scholar 

  • Jones D, Darrah P (1994) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163:1–12

    CAS  Google Scholar 

  • Keller JA, Wolf AA, Weisenhorn PB, Drake BG, Megonigal JP (2009) Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96:101–117

    CAS  Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Google Scholar 

  • Kojima S, Bohner A, Von Wirén N (2006) Molecular mechanisms of urea transport in plants. J Membr Biol 212:83–91

    CAS  PubMed  Google Scholar 

  • Kormanik P, McGraw AC (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principals of mycorrhizal research. The American Phytopathological Society, St. Paul, pp 37–45

    Google Scholar 

  • Kuehny JS, Peet MM, Nelson PV, Willits DH (1991) Nutrient dilution by starch in CO2-enriched chrysanthemum. J Exp Bot 42:711–716

    CAS  Google Scholar 

  • Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466(7302):96–99

  • Langley JA, McKee KL, Cahoon DR, Cherry JA, Megonigal JP (2009) Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc Natl Acad Sci 106:6182–6186

    CAS  PubMed  Google Scholar 

  • Lee YH, Foster J, Chen J, Voll LM, Weber AP, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50:305–319

    CAS  PubMed  Google Scholar 

  • Li J, Erickson JE, Peresta G, Drake BG (2010) Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment. Glob Chang Biol 16:234–245

    Google Scholar 

  • Liu LH, Ludewig U, Frommer WB, Von Wirén N (2003) AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15:790–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Ann Rev Plant Biol 55:591–628

    CAS  Google Scholar 

  • Lu M, Herbert ER, Langley JA, Kirwan ML, Megonigal JP (2019) Nitrogen status regulates morphological adaptation of marsh plants to elevated CO2. Nat Clim Chang 9:764–768

    CAS  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. AIBS Bull 54:731–739

    Google Scholar 

  • Ma Q, Wang J, Sun Y, Yang X, Ma J, Li T (2018) Elevated CO2 levels enhance the uptake and metabolism of organic nitrogen. Physiol Plant 162:467–478

    CAS  PubMed  Google Scholar 

  • McDonald EP, Erickson JE, Kruger EL (2002) Research note: can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Funct Plant Biol 29:1115–1120

    Google Scholar 

  • Mérigout P, Lelandais M, Bitton F, Renou JP, Briand X, Meyer C, Daniel-Vedele F (2008) Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol 147:1225–1238

    PubMed  PubMed Central  Google Scholar 

  • Morris JT, Sundareshwar P, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 8310:2869–2877

    Google Scholar 

  • Mozdzer TJ, Caplan JS (2018) Complementary responses of morphology and physiology enhance the stand-scale production of a model invasive species under elevated CO2 and nitrogen. Funct Ecol 32:1784–1796

    Google Scholar 

  • Mozdzer TJ, Zieman JC, McGlathery KJ (2010) Nitrogen uptake by native and invasive temperate coastal macrophytes: importance of dissolved organic nitrogen. Estuar Coasts 33:784–797

    CAS  Google Scholar 

  • Mozdzer TJ, McGlathery KJ, Mills AL, Zieman JC (2014) Latitudinal variation in the availability and use of dissolved organic nitrogen in Atlantic coast salt marshes. Ecology 95:3293–3303

    Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29

    CAS  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914

    Google Scholar 

  • Näsholm T, Huss-Danell K, Högberg P (2000) Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81:1155–1161

    Google Scholar 

  • Näsholm T, Huss-Danell K, Högberg P (2001) Uptake of glycine by field grown wheat. New Phytol 150:59–63

    Google Scholar 

  • Noyce GL, Kirwan ML, Rich RL, Megonigal JP (2019) Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc Natl Acad Sci USA 116:21623–21628

    CAS  PubMed  Google Scholar 

  • Oaks A, Hirel B (1985) Nitrogen metabolism in roots. Annu Rev Plant Physiol 36:345–365

    CAS  Google Scholar 

  • Pastore MA, Megonigal JP, Langley JA (2017) Elevated CO2 and nitrogen addition accelerate net carbon gain in a brackish marsh. Biogeochemistry 133:73–87

    CAS  Google Scholar 

  • Pate J (1986) Economy of symbiotic nitrogen fixation. On the economy of plant form and function: proceedings of the sixth Maria moors Cabot symposium, evolutionary constraints on primary productivity, adaptive patterns of energy capture in plants, Harvard Forest, August 1983, Cambridge [Cambridgeshire]: Cambridge University Press, 1986

  • Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A, Näsholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252–257

    PubMed  Google Scholar 

  • Quintã R, Hill P, Jones D, Santos R, Thomas D, LeVay L (2015) Uptake of an amino acid (alanine) and its peptide (trialanine) by the saltmarsh halophytes Salicornia europaea and Aster tripolium and its potential role in ecosystem N cycling and marine aquaculture wastewater treatment. Ecol Eng 75:145–154

    Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1996) Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia 108:488–494

    PubMed  Google Scholar 

  • Rasmussen J, Sauheitl L, Eriksen J, Kuzyakov Y (2010) Plant uptake of dual-labeled organic N biased by inorganic C uptake: results of a triple labeling study. Soil Biol Biochem 42:524–527

    CAS  Google Scholar 

  • Rawat SR, Silim SN, Kronzucker HJ, Siddiqi MY, Glass AD (1999) AtAMT1 gene expression and NH4+ uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J 19:143–152

    CAS  PubMed  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    CAS  PubMed  Google Scholar 

  • Reich PB, Hobbie SE, Lee TD, Pastore MA (2018) Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360:317–320

    CAS  PubMed  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Letters 581(12):2281–2289

  • Rubio-Asensio JS, Bloom AJ (2017) Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2. J Exp Bot 68:2611–2625

    CAS  PubMed  Google Scholar 

  • Sauheitl L, Glaser B, Weigelt A (2009) Advantages of compound-specific stable isotope measurements over bulk measurements in studies on plant uptake of intact amino acids. Rapid Commun Mass Spectrom 23:3333–3342

    CAS  PubMed  Google Scholar 

  • Schimel JP, Chapin FS (1996) Tundra plant uptake of amino acid and NH4+ nitrogen in situ: plants complete well for amino acid N. Ecology 77:2142–2147

    Google Scholar 

  • Schobert C, Komor E (1987) Amino acid uptake by Ricinus communis roots: characterization and physiological significance. Plant Cell Environ 10:493–500

    CAS  Google Scholar 

  • Svennerstam H, Ganeteg U, Näsholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol 180:620–630

    CAS  PubMed  Google Scholar 

  • Taub DR, Wang X (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol 50:1365–1374

    CAS  PubMed  Google Scholar 

  • Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74

    CAS  PubMed  Google Scholar 

  • Thornton B, Robinson D (2005) Uptake and assimilation of nitrogen from solutions containing multiple N sources. Plant Cell Environ 28:813–821

    CAS  Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Google Scholar 

  • Turnbull MH, Schmidt S, Erskine PD, Richards S, Stewart GR (1996) Root adaptation and nitrogen source acquisition in natural ecosystems. Tree Physiol 16:941–948

    PubMed  Google Scholar 

  • Warren CR (2012) Post-uptake metabolism affects quantification of amino acid uptake. New Phytol 193:522–531

    CAS  PubMed  Google Scholar 

  • Witte CP (2011) Urea metabolism in plants. Plant Sci 180:431–438

    CAS  PubMed  Google Scholar 

  • Wong SC (1990) Elevated atmospheric partial pressure of CO2 and plant growth: II. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. Photosynth Res 23:171–180

    CAS  PubMed  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74

    Google Scholar 

  • Zhuo D, Okamoto M, Vidmar JJ, Glass AD (1999) Regulation of a putative high-affinity nitrate transporter (Nrt2; 1At) in roots of Arabidopsis thaliana. Plant J 17(5):563–568

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Emily Geoghegan for assistance with experimental work and Gary Peresta, Andrew Peresta and Jim Duls for technical assistance. GMC was funded by the Irish Research Council and the Marie Skłodowska-Curie Actions Programme under the ELEVATE (ELEVATEPD/2014/68) career development research fellowship. This work was also supported by the Department of Energy Terrestrial Ecosystem Science Program (DE-SC0008339), the National Science Foundation Long-Term Research in Environmental Biology Program (DEB-0950080, DEB-1457100, DEB-1557009), and the Smithsonian Institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Grace M. Cott or J. Patrick Megonigal.

Additional information

Responsible Editor: Ad C. Borstlap.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cott, G.M., Jansen, M.A.K. & Megonigal, J.P. Uptake of organic nitrogen by coastal wetland plants under elevated CO2. Plant Soil 450, 521–535 (2020). https://doi.org/10.1007/s11104-020-04504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04504-5

Keywords

Navigation