Skip to main content
Log in

Developmental characteristics of grapevine seedlings root border cells and their response to ρ-hydroxybenzoic acid

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

ρ-hydroxybenzoic acid (4-HBA) is one of the major autotoxins that cause grapevine replant disease. Root border cells (RBCs) play an important role in plant defense. Although RBCs have been investigated in many plants, relevant information in grapevines is limited. In this study, we aimed to investigate the developmental characteristics of RBCs in the grapevine (Vitis riparia × Vitis labrusca) ‘Beta’ and their response to 4-HBA stress.

Methods

RBCs were observed under a laser scanning confocal microscope. The phenolic acid composition of RBCs slime was determined by high-performance liquid chromatography. The level of gene expression was determined by quantitative real-time polymerase chain reaction.

Results

Grapevine RBCs have high biological activity, contain starch granules, and are surrounded by a mucilage layer. Root treatments using different concentrations of 4-HBA affected the development of RBCs and root growth, and induced the secretion of salicylic acid from the RBCs, which can stimulate, induce, and maintain the activity of antioxidant enzymes to some extent in the cells under 4-HBA stress.

Conclusion

Grapevine RBCs may resist 4-HBA stress by increasing its number and enhancing their secondary metabolism and SA accumulation, which can induce the antioxidant defense system of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

4-HBA:

ρ-hydroxybenzoic acid

RBCs:

Root border cells

HPLC:

High-performance liquid chromatography

SA:

Salicylic acid

exDNA:

Extracellular DNA

PME:

Pectin methylesterase

References

  • Asao T, Hasegawa K, Sueda Y, Tomita K, Taniguchi K, Hosoki T et al (2003) Autotoxicity of root exudates from taro. Sci Hortic 97:389–396

    CAS  Google Scholar 

  • Benizri E, Piutti S, Verge S, Loïc P, Vercambre G, Poessel JL et al (2005) Replant diseases: bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol Biochem 37:1738–1746

    CAS  Google Scholar 

  • Boubakri H, Poutaraud A, Wahab MA, Clayeux C, Baltenweckguyot R, Steyer D et al (2013) Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to plasmopara viticola in grapevine. BMC Plant Biol 13:31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouhaouel I, Gfeller A, Fauconnier ML, Rezgui S, Amara HS, Jardin P (2014) Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. BioControl 60:425–436

    Google Scholar 

  • Brigham LA, Woo HH, Hawes MC (1995a) Root border cells as tools in plant cell studies. Methods Cell Biol 49:377–387

    CAS  PubMed  Google Scholar 

  • Brigham LA, Woo HH, Nicoll SM, Hawes MC (1995b) Differential expression of proteins and mRNAs from border cells and root tips of pea. Plant Physiol 109:457–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera JA, Wang D, Schneider SM, Hanson BD (2012) Subsurface drip application of alternative fumigants to methyl bromide for controlling nematodes in replanted grapevines. Pest Manag Sci 68:773–780

    PubMed  Google Scholar 

  • Cai MZ, Wang FM, Li RF, Zhang SN, Wang N, Xu GD (2011a) Response and tolerance of root border cells to aluminum toxicity in soybean seedlings. J Inorg Biochem 105:966–971

    CAS  PubMed  Google Scholar 

  • Cai MZ, Zhang SN, Xing CH, Wang FM, Lei Z, Ning W et al (2011b) Interaction between iron plaque and root border cells ameliorates aluminum toxicity of Oryza sativa differing in aluminum tolerance. Plant Soil 353:155–167

    Google Scholar 

  • Cai MZ, Zhang SN, Xing CH, Wang FM, Ning W, Lei Z (2011c) Developmental characteristics and aluminum resistance of root border cells in rice seedlings. Plant Sci 180:702–708

    CAS  PubMed  Google Scholar 

  • Canellas LP, Olivares FL (2017) Production of border cells and colonization of maize root tips by Herbaspirillum seropedicae are modulated by humic acid. Plant Soil 417:403–413

    CAS  Google Scholar 

  • Cannesan MA, Durand C, Burel C, Gangneux C, Lerouge P, Ishii T et al (2012) Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination. Plant Physiol 159:1658–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capriotti AL, Cavaliere C, Foglia P, Piovesana S, Ventura S (2015) Chromatographic methods coupled to mass spectrometry detection for the determination of phenolic acids in plants and fruits. J Liq Chromatogr Relat Technol 38:353–370

    CAS  Google Scholar 

  • Chen W, Liu P, Xu GD, Cai MZ, Yu H, Chen M (2008) Effects of Al3+on the biological characteristics of cowpea root border cells. Acta Physiol Plant 30:303–308

    CAS  Google Scholar 

  • Chen E, Zhang DH, Wang DD, Jin H, Li XZ, He XF et al (2016) Allelopathic effect and mechanism of action of three phenolic acids on lettuce seedlings. Chinese J Pesticide Sci 18:317–322

    Google Scholar 

  • Chen W, Teng Y, Li Z, Liu W, Ren W, Luo Y et al (2018) Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of South China. Appl Soil Ecol 128:23–34

    Google Scholar 

  • Cheng F, Cheng ZH (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020

    PubMed  PubMed Central  Google Scholar 

  • Davis JR, Pavek JJ, Corsini DL, Sorensen LH, Schneider AT, Everson DO et al (1994) Influence of continuous cropping of several potato clones on the epidemiology of verticillium wilt of potato. Phytopathology 84:207–214

    Google Scholar 

  • Dempsey DMA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575

    CAS  Google Scholar 

  • Ding HY, Cheng ZH, Liu ML, Hayat S, Feng H (2016) Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system. Biol Open 5:631–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Biol 41:339–367

    CAS  Google Scholar 

  • Driouich A, Durand C, Vicré-Gibouin M (2007) Formation and separation of root border cells. Trends Plant Sci 12:14–19

    CAS  PubMed  Google Scholar 

  • Driouich A, Cannesan MA, Dardelle F, Durand C, Plancot B, Bernard S et al (2012) Unity is strength: the power of border cells and border-like cells in relation with plant defense. In: Secretions and exudates in biological systems. Springer, pp 91–107

  • Driouich A, Follet-Gueye ML, Vicré-Gibouin M, Hawes MC (2013) Root border cells and secretions as critical elements in plant host defense. Curr Opin Plant Biol 16:489–495

    CAS  PubMed  Google Scholar 

  • Eayre CG, Sims JJ, Ohr HD, Mackey B (2000) Evaluation of methyl iodide for control of peach replant disorder. Plant Dis 84:1177–1179

    CAS  PubMed  Google Scholar 

  • Feng Y, Motta AC, Reeves DW, Burmester CH, Osborne JA (2003) Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol Biochem 35:1693–1703

    CAS  Google Scholar 

  • Fernandez C, Sébastien V, Jean-Philippe M, Vila B, Ormeño E, Dupouyet S et al (2008) Regeneration failure of pinus halepensis mill.: the role of autotoxicity and some abiotic environmental parameters. For Ecol Manag 255:2928–2936

    Google Scholar 

  • Gallet C (1994) Allelopathic potential in bilberry-spruce forests: influence of phenolic compounds on spruce seedlings. J Chem Ecol 20:1009–1024

    CAS  PubMed  Google Scholar 

  • Guan L, Zhao MZ, Wang QL, Wu WM, Qian YM, Wu JH (2018) Improved CTAB method for extracting RNA from different tissues of fruit trees. Jiangsu Agricultural Sciences 46:19–22 (in Chinese)

    Google Scholar 

  • Gunawardena U, Hawes MC (2002) Tissue specific localization of root infection by fungal pathogens: role of root border cells. Mol Plant-Microbe Interact 15:1128–1136

    CAS  PubMed  Google Scholar 

  • Guo XW, Li K, Sun YN, Zhang LH, Hu XX, Xie HG (2010) Allelopathic effects and identification of allelochemicals in grape root exudates. Acta Horticulturae Sinica 37:861–868 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Guo XW, Li N, Li K, Guo YS, Li CX, Xie HG (2012) Initial isolation and identification of the main toxic material in root exudation of Vitis vinifera. J Fruit Sci 29:861–866 (in Chinese with Engish abstract)

    CAS  Google Scholar 

  • Guo CL, Guo RR, Xu XZ, Gao M, Li XQ, Song JY et al (2014) Evolution and expression analysis of the grape (vitis vinifera L.) WRKY gene family. J Exp Bot 65:1513–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo XW, Wang B, Li K, Liu ZD, Han X, Xu SJ et al (2015) Effect of 4-hydroxybenzoic acid on grape (Vitis vinifera L.) soil microbial community structure and functional diversity. Biotechnol Biotechnol Equip 29:637–645

    CAS  Google Scholar 

  • Hamamoto L, Hawes MC, Rost TL (2006) The production and release of living root cap border cells is a function of root apical meristem type in dicotyledonous angiosperm plants. Ann Bot 97:917–923

    PubMed  PubMed Central  Google Scholar 

  • Hamiduzzaman MM, Jakab G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) β- aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant-Microbe Interact 18:819–829

    CAS  PubMed  Google Scholar 

  • Hao WY, Ren LX, Ran W, Shen QR (2010) Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant Soil 336:485–497

    CAS  Google Scholar 

  • Hawes MC, Brigham LB (1992) Impact of root border cells on microbial populations in the rhizosphere. Plant Pathol 8:119–148

    Google Scholar 

  • Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Y (1998) Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol 36:311–327

    CAS  PubMed  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133

    CAS  PubMed  Google Scholar 

  • Hawes MC, Bengough G, Cassab G, Ponce G (2003) Root caps and rhizosphere. J Plant Growth Regul 21:352–367

    Google Scholar 

  • Hawes MC, Curlango-Rivera G, Wen F, White GJ, Vanetten HD, Xiong Z (2011) Extracellular dna: the tip of root defenses? Plant Sci 180:741–745

    CAS  PubMed  Google Scholar 

  • Hawes MC, Curlango-Rivera G, Xiong Z, Kessler JO (2012) Roles of root border cells in plant defense and regulation of rhizosphere microbial populations by extracellular DNA ‘trapping’. Plant Soil 355:1–16

    CAS  Google Scholar 

  • Henfrey JL, Baab G, Schmitz M (2015) Physiological stress responses in apple under replant conditions. Sci Hortic 194:111–117

    CAS  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    CAS  PubMed  Google Scholar 

  • Hofmann A, Wittenmayer L, Arnold G, Schieber A, Merbach W (2009) Root exudation of phloridzin by apple seedlings (Malus × domestica Borkh.) with symptoms of apple replant disease. J Appl Bot Food Qual 82:193–198

    CAS  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signalling. J Plant Growth Regul 26:290–300

    Google Scholar 

  • Huskey DA, Curlango-Rivera G, Root RA, Wen F, Amistadi MK, Chorover J et al (2018) Trapping of lead (pb) by corn and pea root border cells. Plant Soil 430:205–217

    CAS  Google Scholar 

  • Iqbal A, Fry S (2012) Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings. J Exp Bot 63:2595–2604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaroszuk-Sciseł J, Kurek E, Rodzik B, Winiarczyk K (2009) Interactions between rye (Secale cereale) root border cells (RBCs) and pathogenic and nonpathogenic rhizosphere strains of Fusarium culmorum. Mycol Res 113:1053–1061

    PubMed  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant 36:2287–2297

    CAS  Google Scholar 

  • Kawano T, Furuichi T, Muto S (2004) Controlled salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnology 21:319–335

    CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knox OGG, Gupta VVSR, Nehl DB, Stiller WN (2007) Constitutive expression of cry proteins in roots and border cells of transgenic cotton. Euphytica 154:83–90

    CAS  Google Scholar 

  • Koroney AS, Plasson C, Pawlak B, Sidikou R, Driouich A, Menubouaouiche L (2016) Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum. Ann Bot 118:797–808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG et al (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovácik J, Grúz J, Backor M, Strnad M, Repcák M (2009) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep 28:135–143

    PubMed  Google Scholar 

  • Lake RJ, Falloon PG, Cook DWM (1993) Replant problem and chemical components of asparagus roots. N Z J Crop Hortic Sci 21:53–58

    CAS  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana, are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195

    CAS  PubMed  Google Scholar 

  • Li RF, Cai MZ, Liu P, Xu GD, He L (2007) Physiological and ecological response of the root border cells to aluminum toxicity in soybean. Acta Ecol Sin 27:4182–4190

    CAS  Google Scholar 

  • Li XG, Ding CF, Zhang TL, Wang XX (2014) Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol Biochem 72:11–18

    CAS  Google Scholar 

  • Li M, Yang Y, Feng F, Zhang B, Chen S, Yang C et al (2017a) Differential proteomic analysis of replanted Rehmannia glutinosa roots by iTRAQ reveals molecular mechanisms for formation of replant disease. BMC Plant Biol 17:116

    PubMed  PubMed Central  Google Scholar 

  • Li XW, Liu JY, Fang J, Tao L, Shen RF, Li YL et al (2017b) Boron supply enhances aluminum tolerance in root border cells of pea (Pisum sativum) by interacting with cell wall pectins. Front Plant Sci 8:742

    PubMed  PubMed Central  Google Scholar 

  • Li XG, Jousset A, De Boer W, Carrión VJ, Zhang TL, Wang XX et al (2018) Legacy of land use history determines reprogramming of plant physiology by soil microbiome. The ISME J 13:738–751

    PubMed  Google Scholar 

  • Liu S, Ma DW (2009) The allelopathy of different development stages of Amaranthus retroflexus L. on root border cells of cucumber. Acta Ecol Sin 29:4392–4396

    CAS  Google Scholar 

  • Liu P, Yang YS, Xu G, Guo S, Zheng X, Wang M (2006) Physiological responses of four herbaceous plants to aluminum stress in South China. Frontiers of Biology in China 1:295–302

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lu L, Yin S, Liu X, Zhang W, Gu T, Shen Q et al (2013) Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monoculture. Soil Biol Biochem 65:186–194

    CAS  Google Scholar 

  • Manici LM, Kelderer M, Franke-Whittle IH, Rühmer T, Naef A (2013) Relationship between root-endophytic microbial communities and replant disease in specialized apple growing areas in europe. Appl Soil Ecol 72:207–214

    Google Scholar 

  • Mazzola M (1998) Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 88:930–938

    CAS  PubMed  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyasaka S, Hawes MC (2001) Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125:1978–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa NR, Hyekyong K, Younghae C, Erkelens C, Lefeber AWM, Spijksma G et al (2009) Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry 70:532–539

    CAS  PubMed  Google Scholar 

  • Nan D, Chang E, Li M, Jing J, Yao X, Bartish IV et al (2016) Transcriptome characterization of Gnetum parvifolium reveals candidate genes involved in important secondary metabolic pathways of flavonoids and stilbenoids. Front Plant Sci 7:174

    Google Scholar 

  • Nguyen TN, Son SH, Jordan MC, Levin DB, Ayele BT (2016) Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC Plant Biol 16:28

    PubMed  PubMed Central  Google Scholar 

  • Pan JW, Ye D, Wang LL, Hua J, Zhao GF, Pan WH et al (2004) Root border cell development is a temperature-insensitive and Al-sensitive process in barley. Plant Cell Physiol 45:751–760

    CAS  PubMed  Google Scholar 

  • Park YS, Min HJ, Ryang SH, Oh KJ, Cha JS, Kim HY, Cho TJ (2003) Characterization of salicylic acid-induced genes in Chinese cabbage. Plant Cell Rep 21:1027–1034

    CAS  PubMed  Google Scholar 

  • Peng C, Wang Y, Sun L, Xu C, Zhang L, Shi J (2015) Distribution and speciation of cu in the root border cells of rice by STXM combined with NEXAFS. Bull Environ Contam Toxicol 96:408–414

    PubMed  Google Scholar 

  • Plancot B, Santaella C, Jaber R, Kiefermeyer MC, Folletgueye ML, Leprince J et al (2013) Deciphering the responses of root border-like cells of arabidopsis and flax to pathogen-derived elicitors. Plant Physiol 163:1584–1597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao YX, Zhang YP, Zhang HX, Tian YQ, Gao LH (2013) Developmental characteristics and cinnamic acid resistance of root border cells in cucumber and figleaf gourd seedlings. J Integr Agric 12:2065–2073

    Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    CAS  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167

    Google Scholar 

  • Ren C, Kermode AR (2000) An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds. Plant Physiol 124:231–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richard L, Qin LX, Gadal P, Goldberg R (1994) Molecular cloning and characterisation of a putative pectin methylesterase cDNA in Arabidopsis thaliana (L.). FEBS Lett 355:135–139

    CAS  PubMed  Google Scholar 

  • Seigies AT, Pritts M (2006) Cover crop rotations alter soil microbiology and reduce replant disorders in strawberry. Hortscience A Publication of the American Society for Horticultural Science 41:1303–1308

    Google Scholar 

  • Slaughter A, Hamiduzzaman MM, Gindro K, Neuhaus JM, Mauch-Mani B (2008) Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: involvement of pterostilbene. Eur J Plant Pathol 122:185–195

    CAS  Google Scholar 

  • Smith-Becker J, Marois E, Huguet EJ, Midland SL, Sims JJ, Keen NT (1998) Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. Plant Physiol 116:231–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soltys D, Rudzińska-Langwald A, Kurek W, Szajko K, Sliwinska E, Bogatek R et al (2014) Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression. J Plant Physiol 171:565–575

    CAS  PubMed  Google Scholar 

  • Stephenson M, Hawes MC (1994) Correlation of pectin methylesterase activity in root caps of pea with brder cell separation. Plant Physiol 106:739–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun RZ, Zhang X, Cheng G, Qiang LI, Zhu YR, Chen W et al (2016) Genome-wide characterization and expression analysis of the phenylalanine ammonia-lyase gene family in grapevine (Vitis vinifera L.). Plant Physiology J 2:195–208

    Google Scholar 

  • Sunmonu TO, Staden JV (2014) Phytotoxicity evaluation of six fast-growing tree species in South Africa. S Afr J Bot 90:101–106

    CAS  Google Scholar 

  • Tran TM, Macintyre A, Hawes MC, Allen C (2016) Escaping underground nets: extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium Ralstonia solanacearum. PLoS Pathog 12:e1005686

    PubMed  PubMed Central  Google Scholar 

  • Wang LJ, Li SH (2006) Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul 48:137–144

    CAS  Google Scholar 

  • Wang LJ, Huang WD, Yu FY (2001) Effects of elevated temperature on transportation and distribution of 14C-salicylic acid in grape seedlings. Acta Phytophysiologica Sinica 27:129–134

    CAS  Google Scholar 

  • Wang P, Sun X, Li C, Wei ZW, Liang D, Ma FW (2013) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    CAS  PubMed  Google Scholar 

  • Watson BS, Bedair M, Urbanczyk-Wochniak E, Huhman DV, Yang DS, Allen SN et al (2015) Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. Plant Physiol 167:1699–1716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiller F, Moore JP, Young P, Driouich A, Vivier MV (2016) The brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides. Ann Bot 119:803

    PubMed Central  Google Scholar 

  • Weiß S, Liu B, Reckwell D, Beerhues L, Winkelmann T (2017) Impaired defense reactions in apple replant disease-affected roots of malus domestica 'M26'. Tree Physiol 37:1–14

    Google Scholar 

  • Wen F, Zhu Y, Hawes MC (1999) Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11:1129–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen F, Curlango-Rivera G, Hawes MC (2007a) Proteins among the polysaccharides: a new perspective on root cap slime. Plant Signal Behav 2:410–412

    PubMed  PubMed Central  Google Scholar 

  • Wen F, Vanetten HD, Tsaprailis G, Hawes MC (2007b) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen F, White GJ, Vanetten HD, Xiong ZG, Hawes MC (2009) Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiol 151:820–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen F, Curlango-Rivera G, Huskey DA, Xiong Z, Hawes MC (2017) Visualization of extracellular dna released during border cell separation from the root cap. Am J Bot 104:1–9

    Google Scholar 

  • Westphal A, Browne GT, Schneider S (2002) Evidence for biological nature of the grape replant problem in California. Plant Soil 242:197–203

    CAS  Google Scholar 

  • Wink M (1983) Inhibition of seed germination by quinolizidine alkaloids: aspects of allelopathy in Lupinus albus L. Planta 158:365–368

    CAS  PubMed  Google Scholar 

  • Wink M (2016) Secondary metabolites, the role in plant diversification of. In: Encyclopedia of evolutionary biology, In, pp 1–9

    Google Scholar 

  • Wu B, Long QL, Gao Y, Wang Z, Shao TW, Liu YN et al (2015) Comprehensive characterization of a timecourse transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq. BMC Gnomics 16:1010

    Google Scholar 

  • Wu L, Wang J, Huang W, Wu H, Chen J, Yang Y et al (2016) Corrigendum: plant-microbe rhizosphere interactions mediated by rehmannia glutinosa root exudates under consecutive monoculture. Sci Rep 5:15871

    Google Scholar 

  • Wuyts N, Maung ZTZ, Swennen R, Waele DD (2006) Banana rhizodeposition: characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis. Plant Soil 283:217–228

    CAS  Google Scholar 

  • Xiong W, Zhao QY, Zhao J, Xun WB, Li R, Zhang RF et al (2014) Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microb Ecol 70:209–218

    PubMed  Google Scholar 

  • Yang JI, Ruegger PM, Mckenry MV, Becker JO, Borneman J (2012) Correlations between root-associated microorganisms and peach replant disease symptoms in a California soil. PLoS One 7:e46420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Qu M, Fang J, Shen RF, Feng YM, Liu JY, et al. (2016) Alkali-soluble pectin is the primary target of aluminum immobilization in root border cells of pea (Pisum sativum). Front Plant Sci 7: 1297

  • Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem Syst Ecol 31:129–139

    CAS  Google Scholar 

  • Zhang Y, Hu T, Ji L, Cao K (2008) A bio-product as alternative to methyl bromide for replant disease control on strawberry. Front Agric China 2:72–76

    Google Scholar 

  • Zhang Y, Chen B, Gao S, Rong T (2014) Biological characters of root border cells development in maize (Zea mays). Biotechnology 13:89–98

    Google Scholar 

  • Zhang Y, Wu YH, Xu GD, Song JM, Wu TG, Mei XM et al (2017) Effects of iron toxicity on the morphological and biological characteristics of rice root border cells. J Plant Nutr 40:332–343

    CAS  Google Scholar 

  • Zhao XW, Misaghi IJ, Hawes MC (2000) Stimulation of border cell production in response to increased carbon dioxide levels. Plant Physiol 122:181–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wan H, He J, Lyu D, Li H (2017) Integration of cadmium accumulation, subcellular distribution, and physiological responses to understand cadmium tolerance in apple root stocks. Front Plant Sci 8:966

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Ma J, Xie J, Deng L, Yao S, Zeng K (2018) Transcriptomic and biochemical analysis of highlighted induction of phenylpropanoid pathway metabolism of citrus fruit in response to salicylic acid, pichia membranaefaciens and oligochitosan. Postharvest Biol Technol 142:81–92

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31101503; 31572076), the Ministry of Education of the Liaoning Province of China (Grant 2015493), the Special Foundation of China Agricultural Research System (CARS-29-yc-6), and the Distinguished Middle-Aged and Young Scientist Encourage and Reward Foundation of Shenyang City (RC170467).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Li or Xiuwu Guo.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, K., Guo, X. et al. Developmental characteristics of grapevine seedlings root border cells and their response to ρ-hydroxybenzoic acid. Plant Soil 443, 199–218 (2019). https://doi.org/10.1007/s11104-019-04220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04220-9

Keywords

Navigation