Skip to main content
Log in

Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Liquorice (Glycyrrhiza uralensis Fisch.) is an important medicinal plant as it accumulates active ingredients, glycyrrhizin and liquiritin, in its roots. Arbuscular mycorrhizal (AM) symbiosis and phosphorus (P) nutrition both affect the accumulation of glycyrrhizin and liquiritin in liquorice roots and it is well known that AM symbiosis mediates P nutrition in many plant species. However, whether AM symbiosis affects the accumulation of glycyrrhizin and liquiritin in G. uralensis through P nutrition is largely unknown.

Methods

In order to compare the P addition and AM effects on plant performance, we carried out a controlled-environment experiment in which non-AM plants were subjected to different P addition levels compared with an AM inoculated treatment with no P addition. Plant dry weight, stomatal conductance and photosynthetic rate, root P, carbon (C) and nitrogen (N) concentrations, glycyrrhizin and liquiritin concentrations, as well as the expression of glycyrrhizin and liquiritin biosynthesis genes were measured.

Results

Both P addition and AM inoculation improved plant growth and photosynthesis traits. When root P concentration of non-AM plants matched that of AM plants, both plants showed similar glycyrrhizin and liquiritin concentrations, C:N ratios and biosynthesis gene expressions.

Conclusions

The results suggested that improved P nutrition by AM symbiosis was of primary importance for facilitating glycyrrhizin and liquiritin accumulation in G. uralensis plants. This confirmed the role of AM symbiosis improving plant P uptake in the regulation of secondary metabolite biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhiza

HMGR :

3-Hydroxy-3-methylglutary CoA reductase gene

FPS :

Farnesyl diphosphate synthase gene

SQS :

Squalene synthase gene

β-AS :

β-amyrin synthase gene

CYP88D6 :

Cytochrome P450 monooxygenase 88D6 gene

CYP72A154 :

Cytochrome P450 monooxygenase 72A154 gene

UGAT :

UDP-dependent glucuronosyltransferases gene

CHS :

Chalcone synthase gene

P:

Phosphorus

C:

Carbon

N:

Nitrogen

MVA:

Mevalonic acid

References

  • Adolfsson L, Nziengui H, Abreu IN, Šimura J, Beebo A, Herdean A, Aboalizadeh J, Široká J, Moritz T, Novák O, Ljung K, Schoefs B, Spetea C (2017) Enhanced secondary-and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatula. Plant Physiol 175:392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afreen F, Zobayed SM, Kozai T (2005) Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system. Plant Physiol Bioch 43:1074–1081

    Article  CAS  Google Scholar 

  • Akhzari D (2015) Response of Glycyrrhiza glabra L. to arbuscular mycorrhizal fungi and water stress. J Essent Oil Bear Pl 18:992–1002

    Article  CAS  Google Scholar 

  • Avio L, Turrini A, Giovannetti M, Sbrana C (2018) Designing the ideotype mycorrhizal symbionts for the production of healthy food. Front Plant Sci 9:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Baas R, Lambers H (1988) Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to the internal phosphate concentration. Physiol Plantarum 74:701–707

    Article  CAS  Google Scholar 

  • Black KG, Mitchell DT, Osborne BA (2000) Effect of mycorrhizal enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant Cell Environ 23:797–809

    Article  CAS  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Methodol 2:211–252

    Google Scholar 

  • Bryant JP, Chapin FS III, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Ann Rev Eco Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme a reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MM, Yin HB, O’Connor P, Wang YS, Zhu YG (2010) C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant Soil 326:21–29

    Article  CAS  Google Scholar 

  • Chen ML, Yang G, Sheng Y, Li PY, Qiu HY, Zhou XT, Huang LQ, Chao Z (2017) Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Front Plant Sci 8:931

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci 95:1950–1955

    Article  CAS  PubMed  Google Scholar 

  • Fritz C, Palacios-Rojas N, Feil R, Stitt M (2006) Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J 46:533–548

    Article  CAS  PubMed  Google Scholar 

  • Gao ZB, Wang HY, Lü XT, Wang ZW (2017) Effects of nitrogen and phosphorus addition on C:N:P stoichiometry in roots and leaves of four dominant plant species in a meadow steppe of Hulunbuir. Chin J Ecol 36:80–88

    Google Scholar 

  • Gershenzon J (1994) Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol 20:1281–1328

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Graciano C, Goya JF, Frangi JL, Guiamet JJ (2006) Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis. Forest Ecol Manag 236:202–210

    Article  Google Scholar 

  • Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S, McHardy AC, Dangl JL, Knight R, Ley R, Schulze-Lefert P (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95

    Article  Google Scholar 

  • Hayashi H (2009) Molecular biology of secondary metabolism: case study for Glycyrrhiza plants. In: Recent Advances in Plant Biotechnology. Springer, Boston, pp 89–103

    Chapter  Google Scholar 

  • Hayashi H, Sudo H (2009) Economic importance of licorice. Plant Biotechnol 26:101–104

    Article  CAS  Google Scholar 

  • Hilou A, Zhang HQ, Franken P, Hause B (2014) Do jasmonates play a role in arbuscular mycorrhiza-induced local bioprotection of Medicago truncatula against root rot disease caused by Aphanomyces euteiches? Mycorrhiza 24:45–54

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Nassiri-Asl M (2015) Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: update and review. Phytother Res 29:1868–1886

    Article  PubMed  Google Scholar 

  • Huang JB, Hammerbacher A, Forkelová L, Hartmann H (2017) Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat. Plant Cell Environ 40:672–685

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen I (1995) Transport of phosphorus and carbon in VA mycorrhizas. Springer, Berlin

    Book  Google Scholar 

  • Jia HF, Wang JA, Yang YF, Liu GS, Bao Y, Cui H (2015) Changes in flavonol content and transcript levels of genes in the flavonoid pathway in tobacco under phosphorus deficiency. Plant Growth Regul 76:225–231

    Article  CAS  Google Scholar 

  • Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the Law of the Minimum. New Phytol 205:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Anand G, Gupta P, Mandal S (2017) Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochem Rev 16:677–692

    Article  CAS  Google Scholar 

  • Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Köhl L, Lukasiewicz CE, Heijden MGA (2016) Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant Cell Environ 39:136–146

    Article  CAS  PubMed  Google Scholar 

  • Lauren DR, Jensen DJ, Douglas JA, Follett JM (2001) Efficient method for determining the glycyrrhizin content of fresh and dried roots, and root extracts, of Glycyrrhiza species. Phytochem Analysis 12:332–335

    Article  CAS  Google Scholar 

  • Li Y, Niu Y, Song J, Song JY, Luo HM, Li QS, Sun C (2013) Development of the devices for synthetic biology of glycyrrhizin at an early stage: cloning and sequencing analysis of farnesyl-diphosphate synthase genes in Glycyrrhiza uralensis. World Sci Technol-Mod Trad Chin Med Mater Med 15:355–359

    Google Scholar 

  • Li JY, Guo QX, Zhang JX, Korpelainen H, Li CY (2016a) Effects of nitrogen and phosphorus supply on growth and physiological traits of two Larix species. Environ Exp Bot 130:206–215

    Article  CAS  Google Scholar 

  • Li YP, Yu CX, Qiao J, Zang YM, Xiang Y, Ren GX, Wang L, Zhang XY, Liu CS (2016b) Effect of exogenous phytohormones treatment on glycyrrhizic acid accumulation and preliminary exploration of the chemical control network based on glycyrrhizic acid in root of Glycyrrhiza uralensis. Rev Bras Farmacogn 26:490–496

    Article  CAS  Google Scholar 

  • Li JL, Liu SJ, Wang J, Li J, Li JX, Gao WY (2017a) Gene expression of glycyrrhizin acid and accumulation of endogenous signaling molecule in Glycyrrhiza uralensis Fisch adventitious roots after Saccharomyces cerevisiae and Meyerozyma guilliermondii applications. Biotechnol Appl Biochem 64:700–711

    Article  CAS  PubMed  Google Scholar 

  • Li D, Xu GJ, Ren GX, Sun YF, Huang Y, Liu CS (2017b) The application of ultra-high-performance liquid chromatography coupled with a LTQ-qrbitrap mass technique to reveal the dynamic accumulation of secondary metabolites in licorice under ABA stress. Molecules 22:1742

    Article  CAS  PubMed Central  Google Scholar 

  • Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31:587–601

    Article  CAS  PubMed  Google Scholar 

  • Liu JN, Wu LJ, Wei SL, Xiao X, Sun CX, Jiang P, Song ZB, Wang T, Yu ZL (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52:29–39

    Article  CAS  Google Scholar 

  • Liu HL, Tan Y, Nell M, Zitter-Eglseer T, Wawscrah C, Kopp B, Wang SM (2014) Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites. J Arid Land 6:186–194

    Article  Google Scholar 

  • Liu L, Yang DF, Liang TY, Zhang HH, He ZG, Liang ZS (2016) Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots. Plant Cell Rep 35:1933–1942

    Article  CAS  PubMed  Google Scholar 

  • Liu WL, Shi SL, Tian FP, Luo YZ (2017) Spatial distribution of alfalfa biomass and response of leaf C, N, P ecological stoichiometry to P addition. Acta Agrect Sin 25:322–329

    Google Scholar 

  • Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194

    Article  Google Scholar 

  • Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Abdin MZ, Kapoor R (2015) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25:345–357

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Sakurai T, Seki H, Yoshida T, Takahagi K, Sawai S, Uchiyama H, Muranaka T, Saito K (2017) Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J 89:181–194

    Article  CAS  PubMed  Google Scholar 

  • Nair A, Kolet SP, Thulasiram HV, Bhargava S (2015) Role of methyl jasmonate in the expression of mycorrhizal induced resistance against Fusarium oxysporum in tomato plants. Physiol Mol Plant P 92:139–145

    Article  CAS  Google Scholar 

  • Nasrollahi V, Mirzaie-asl A, Piri K, Nazeri S, Mehrabi R (2014) The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra). Phytochemistry 103:32–37

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339

    CAS  PubMed  Google Scholar 

  • Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72:125–131

    Article  CAS  PubMed  Google Scholar 

  • Orujei Y, Shabani L, Tehrani MS, Aghababaei F, Enteshari S (2013) Dual effects of two mycorrhizal fungi on production of glycyrrhizin total phenolic and total flavonoids compounds in roots of Glycyrrhiza glabra L. J Plant Biol 5:75–88

    Google Scholar 

  • Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49:157–165

    Article  CAS  Google Scholar 

  • Pant BD, Pant P, Erban A, Huhman D, Kopka J, Scheible WR (2015) Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Plant Cell Environ 38:172–187

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45

    Article  Google Scholar 

  • Qiao J, Luo ZL, Li YP, Ren GX, Liu CS, Ma XJ (2017) Effect of abscisic acid on accumulation of five active components in root of Glycyrrhiza uralensis. Molecules 22:1982

    Article  CAS  PubMed Central  Google Scholar 

  • Rivero J, Gamir J, Aroca R, Pozo MJ, Flors V (2015) Metabolic transition in mycorrhizal tomato roots. Front Microbiol 6:598

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzato G, Scalabrin E, Radaelli M, Capodaglio G, Piccolo O (2017) A new exploration of licorice metabolome. Food Chem 221:959–968

    Article  CAS  PubMed  Google Scholar 

  • Saia S, Benítez E, García-Garrido JM, Settanni L, Amato G, Giambalvo D (2014) The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material. J Agric Sci 152:370–378

    Article  Google Scholar 

  • Saia S, Ruisi P, Fileccia V, Miceli GD, Amato G, Martinelli F (2015) Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under N-limited, P-rich field conditions. PLoS One 10:e0129591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweiger R, Müller C (2015) Leaf metabolome in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 26:120–126

    Article  CAS  Google Scholar 

  • Schweiger R, Baier MC, Müller C (2014a) Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake. Mol Plant-Microbe In 27:1403–1412

    Article  CAS  Google Scholar 

  • Schweiger R, Baier MC, Persicke M, Müller C (2014b) High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Nat Commun 5:3886

    Article  CAS  Google Scholar 

  • Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T (2008) Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc Natl Acad Sci 105:14204–14209

    Article  PubMed  Google Scholar 

  • Seki H, Sawai S, Ohyama K, Mizutani M, Ohnishi T, Sudo H, Fukushima EO, Akashi T, Aoki T, Saito K (2011) Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell 23:4112–4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabani L, Ehsanpour AA, Asghari G, Emami J (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russian J Plant Physiol 56:621–626

    Article  CAS  Google Scholar 

  • Sharma E, Anand G, Kapoor R (2017) Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Ann Bot 119:791–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen ZY, Liu CS, Wang XY (2009) Cloning and characterization of open reading frame encoding beta-amyrin synthase in Glycyrrhiza uralensis. China J Chinese Materia Medica 34:2438–2440

    CAS  Google Scholar 

  • Shinde S, Naik D, Cumming JR (2017) Carbon allocation and partitioning in Populus tremuloides are modulated by ectomycorrhizal fungi under phosphorus limitation. Tree Physiol 38:52–65

    Article  CAS  Google Scholar 

  • Shrivastava G, Ownley BH, Augé RM, Toler H, Dee M, Vu A, Köllner TG, Chen F (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65–74

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier, New York

    Google Scholar 

  • Tavarini S, Passera B, Martini A, Avio L, Sbrana C, Giovannetti M, Angelini LG (2018) Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorous fertilization in Stevia rebaudiana Bert. Ind Crop Prod 111:899–907

    Article  CAS  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In: GianinazziPearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA-Press, Paris, pp 217–221

    Google Scholar 

  • Urcoviche RC, Gazim ZC, Dragunski DC, Barcellos FG, Alberton O (2015) Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Ind Crop Prod 67:103–107

    Article  CAS  Google Scholar 

  • Vasisht K, Sharma N, Karan M (2016) Current perspective in the international trade of medicinal plants material: an update. Curr Pharm Design 22:4288–4336

    Article  CAS  Google Scholar 

  • Walder F, van der Heijden MGA (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat Plants 1:15159

    Article  CAS  PubMed  Google Scholar 

  • Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J 21:571–578

    Article  CAS  PubMed  Google Scholar 

  • Wang LX, Li JP, Li Q, Zhang XY (2009) Research status and sustainable utilization strategy of Glycyrr hiza uralensis. Chinese Tradit Herbal Drugs 40:496–499

    Google Scholar 

  • Wang J, Gao WY, Zhang LM, Huang LQ (2013) Establishment and quality assessment of tissue cultures in Glycyrrhiza uralensis Fisch. Appl Biochem Biotech 169:588–594

    Article  CAS  Google Scholar 

  • Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    Article  CAS  PubMed  Google Scholar 

  • Welling MT, Liu L, Rose TJ, Waters DLE, Benkendorff K (2016) Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. Plant Biol 18:552–562

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  Google Scholar 

  • Xiang Y, Liu CS, Liu Y, Song XN, Gu X (2015) Effects of abscisic acid on chemical components content and color of Glycyrrhiza uralensis. China J Chinese Materia Medica 9:1688–1692

    Google Scholar 

  • Xie W, Hao ZP, Zhou XF, Jiang XL, Xu LJ, Wu SL, Zhao AH, Zhang X, Chen BD (2018) Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza 28:285–300

    Article  CAS  PubMed  Google Scholar 

  • Xu GJ, Cai W, Gao W, Liu CS (2016) A novel glucuronosyltransferase has an unprecedented ability to catalyse continuous two-step glucuronosylation of glycyrrhetinic acid to yield glycyrrhizin. New Phytol 212:123–135

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23:253–265

    Article  CAS  PubMed  Google Scholar 

  • Zhang HC, Liu JM, Lu HY, Gao SL (2009) Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep 28:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Zhang RQ, Zhu HH, Zhao HQ, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170:74–79

    Article  CAS  PubMed  Google Scholar 

  • Zhao RX, Guo W, Bi N, Guo JY, Wang LX, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49

    Article  Google Scholar 

  • Zhou S, Ma YS, Hu T, Zhang XD, Yin YC, Gao ZQ, Liu Y (2017) Molecular cloning and sequence analysis of chalcone synthase cDNA in Glycyrrhiza uralensis. Lett Biotech 28:812–817

    Google Scholar 

  • Zouari I, Salvioli A, Chialva M, Novero M, Miozzi L, Tenore GC, Bagnaresi P, Bonfante P (2014) From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics 15:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubek S, Rola K, Szewczyk A, Majewska ML, Turnau K (2015) Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil 390:129–142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Yan Zeng from China National Traditional Chinese Medicine Corporation for providing the Glycyrrhiza uralensis seeds and Dr. Pengyue Li from Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences for assisting the determination of active ingredients in Glycyrrhiza uralensis plants. This work was financially supported by the National Natural Science Foundation of China (Project no. 41571250) and the National Key Research and Development Program of China (Project no. 2016YFC0500702).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipeng Hao or Baodong Chen.

Additional information

Responsible Editor: Tatsuhiro Ezawa.

Electronic supplementary material

ESM 1

(DOCX 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Hao, Z., Yu, M. et al. Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis. Plant Soil 439, 243–257 (2019). https://doi.org/10.1007/s11104-018-3861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3861-9

Keywords

Navigation