Skip to main content
Log in

Omics for understanding the mechanisms of Streptomyces lydicus A01 promoting the growth of tomato seedlings

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Tomato is an important vegetable plant worldwide. Previously, we isolated a soilborne Actinobacteria species, Streptomyces lydicus A01, which promotes the growth of tomato seedlings. The related mechanisms are needed to study.

Methods

RNA sequencing and gas chromatography–mass spectrometry were used reveal the global effect of S. lydicus A01 on tomato seedlings. Liquid chromatography–mass spectrometry was used to detect plant hormones in tomato seedlings during the growth-promotion procedure.

Results

After administration of S. lydicus A01, tomato seedlings exhibit more vigorous growth with more leaflets and improved photosynthesis. It was revealed that S. lydicus A01 has some effects on the basic metabolism of tomato seedlings. Meanwhile, the biosynthesis of secondary metabolites related to plant growth was regulated, including cutin, suberine, wax and flavonoid. Additionally, plant hormones including abscisic acid, salicylic acid and jasmonic acid were discovered to involve in the plant-growth-promoting activity of S. lydicus A01.

Conclusions

This study revealed some growth-promoting mechanisms of tomato seedlings by S. lydicus A01, laying the groundwork for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157:414–421

    Article  CAS  PubMed  Google Scholar 

  • Bajad SU, Lu W, Kimball E, Yuan J, Peterson CN, Rabinowitz JD (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88

    Article  CAS  PubMed  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordag N, Klie S, Jurchott K, Vierheller J, Schiewe H, Albrecht V, Tonn JC, Schwartz C, Schichor C, Selbig J (2015) Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects. Sci Rep 5:15954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buff TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383

    Article  Google Scholar 

  • Camara D, Bisanz C, Barette C, Van Daele J, Human E, Barnard B, Van der Straeten D, Stove CP, Lambert WE, Douce R, Marechal E, Birkholtz LM, Cesbron-Delauw MF, Dumas R, Rebeille F (2012) Inhibition of p-aminobenzoate and folate syntheses in plants and apicomplexan parasites by natural product rubreserine. J Biol Chem 287:22367–22376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant-pathogen interactions. J Plant Res 124:489–499

    Article  CAS  PubMed  Google Scholar 

  • Chaiharn M, Lumyong S (2009) Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. World J Microbiol Biotechnol 25:305–314

    Article  CAS  Google Scholar 

  • Cheah HL, Lim V, Sandai D (2014) Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS One 9:e95951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • China MOA (2017) Tomato 2016 market analysis and 2017 market forecast

  • Chitarrini G, Soini E, Riccadonna S, Franceschi P, Zulini L, Masuero D, Vecchione A, Stefanini M, Di Gaspero G, Mattivi F, Vrhovsek U (2017) Identification of biomarkers for defense response to Plasmopara viticola in a resistant grape variety. Front Plant Sci 5:1524

    Article  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47(4):289–297

    Article  CAS  PubMed  Google Scholar 

  • Crisan ME, Bourosh P, Maffei ME, Forni A, Pieraccini S, Sironi M, Chumakov YM (2014) Synthesis, crystal structure and biological activity of 2-hydro-xyethylammonium salt of p-Aminobenzoic Acid. PLoS One 9(7):e101892

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias MP, Bastos MS, Xavier VB, Cassel E, Astarita LV, Santarém ER (2017) Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol Biochem 118:479–493

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Jing H, Qin B, Qi L, Li J, Wang T, Liu G (2010) Regulation of cell division and growth in roots of Lactuca sativa L. seedlings by the Ent-Kaurene diterpenoid rabdosin B. J Chem Ecol 36:553–563

    Article  CAS  PubMed  Google Scholar 

  • Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Li C, Wei J, Kang L, Li J, Li C (2014) Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell 26:3167–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M (2017) Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 7:4017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Z, Li G, Huang J, Niu X, Zou H, Zang G, Wenwen Y, Wang G (2012) Photosynthetic and physiological analysis of the rice high-chlorophyll mutant (Gc). Plant Physiol Biochem 60:81–87

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Lewis JA, Papavizas GC (1991) Biocontrol of plant diseases: the approach for tomorrow. Crop Prot 10:95–105

    Article  Google Scholar 

  • Li J (2011) Chinese tomato breeding. China Ariculture Press, Beijing

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu CG, Liu WC, Qiu JY, Wang HM, Liu T, De Liu W (2008) Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01. Braz J Microbiol 39:701–707

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazhar R, Ilyas N, Raja NI, Saeed M, Hussain M, Seerat W, Qureshi H, Shabir S (2016) Plant growth-promoting rhizobacteria: biocontrol potential for pathogens. Pure Appl Biol 5(4):1288–1295

    CAS  Google Scholar 

  • Mei C, Michaud M, Cussac M, Albrieux C, Gros V, Marechal E, Block MA, Jouhet J, Rebeille F (2015) Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures. Sci Rep 5:15207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Nitrogen fixation and transportation by rhizobacteria: a scenario of rice and banana. Int J Bot 6:235–242

    Article  Google Scholar 

  • Morales-Flores F, Olivares-Palomares KS, Aguilar-Laurents MI, Rivero-Cruz JF, Lotina-Hennsen B, King-Díaz B (2015) Flavonoids affect the light reaction of photosynthesis in vitro and in vivo as well as the growth of plants. J Agric Food Chem 63:8106–8115

    Article  CAS  PubMed  Google Scholar 

  • Mouradov A, Spangenberg G (2014) Flavonoids: a metabolic network mediating plants adaptation to their real estate. Front Plant Sci 5:620

    Article  PubMed  PubMed Central  Google Scholar 

  • Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E (2012) Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23(2):297–310

    Article  CAS  PubMed  Google Scholar 

  • Omann M, Zeilinger S (2010) How a mycoparasite employs g-protein signaling: using the example of trichoderma. J Signal Transduct 2010:123–126

    Article  CAS  Google Scholar 

  • Qin Y, Han Y, Shang Q, Li P (2015) Complete genome sequence of Bacillus amyloliquefaciens L-H15, a plant growth promoting rhizobacteria isolated from cucumber seedling substrate. J Biotechnol 200:59–60

    Article  CAS  PubMed  Google Scholar 

  • Ring L, Yeh SY, Huecherig S, Hoffmann T, Blanco-Portales R, Fouche M, Villatoro C, Denoyes B, Monfort A, Caballero JL, Muñoz-Blanco J, Gershenson J, Schwab W (2013) Metabolic interaction between anthocyanin and lignin biosynthesis is associated with peroxidase FaPRX27 in strawberry fruit. Plant Physiol 163:43–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan JS (1977) The basis of taxonomy of actinomycetes. The Chinese Academic Press, Beijing, pp 139–146

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Salla T D, da Silva R, Astarita L V and Santarém E R (2014) Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiol Biochem 85: 14–20

    Article  CAS  PubMed  Google Scholar 

  • Shibayama J, Yuzyuk TN, Cox J, Makaju A, Miller M, Lichter J, Li H, Leavy JD, Franklin S, Zaitsev AV (2015) Metabolic remodeling in moderate synchronous versus dyssynchronous pacing-induced heart failure: integrated metabolomics and proteomics study. PLoS One 10:e118974

    Article  CAS  Google Scholar 

  • Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  CAS  PubMed  Google Scholar 

  • Sobolev VS, Horn BW, Potter TL, Deyrup ST, Gloer JB (2006) Production of stilbenoids and phenolic acids by the peanut plant at early stages of growth. J Agric Food Chem 54:3505–3511

    Article  CAS  PubMed  Google Scholar 

  • Stevenson JM, Perera IY, Heilmann I, Persson S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5:252–258

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Yuan M, Wang R, Yang Y, Wang C, Osesprieto JA, Kim T, Zhou H, Deng Z, Gampala SS (2011) PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol 13:124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J and Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W (2012) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24:3506–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos MW, Menguer PK, Hu Y, Revers LF, Sperotto RA (2016) Stress signaling responses in plants. Biomed Res Int 2016:4720280

  • Xu J, Zhang S (2015) Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci 20:56–64

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Bio 1:227–234

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Municipal Science and Technology Plan Projects (No. D151100003915002), Beijing Leafy Vegetables Innovation Team of Modern Agro-industry Technology Research System (BAIC07-2018), Science and Technology Innovation Ability Construction of BAAFS (No. KJCX20170415, No. KJCX20170107), Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China (No. BZ0432), National Key Research and Development Program of China (No. 2017YFD0200403, No. 2017YFD0201108), National Natural Science Foundation of China (No. 31270155), Science and Technology Innovation Team of Beijing Academy of Agriculture and Forestry Sciences (No. JNKST201607), and the National Special Project of Basic Work Project for Science and Technology (No. 2014FY120900). We sincerely thank Suzhou BioNovoGene Metabolomics Platform for the assistance in plant hormone detection with LC-MS and correlation analysis of GC-MS and RNA-seq data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Cheng Liu, Jie Chen or Cai-Ge Lu.

Ethics declarations

Conflict of interests

The authors declare no competing financial interests.

Additional information

Responsible Editor: Hans Lambers.

Qiong Wu and Mi Ni are co-first authors

Electronic supplementary material

ESM 1

(DOCX 20.8 kb)

ESM 2

(DOCX 24.4 kb)

ESM 3

(DOCX 19.9 kb)

ESM 4

(DOCX 20.6 kb)

ESM 5

(DOCX 20 kb)

ESM 6

(DOCX 19.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Ni, M., Liu, WC. et al. Omics for understanding the mechanisms of Streptomyces lydicus A01 promoting the growth of tomato seedlings. Plant Soil 431, 129–141 (2018). https://doi.org/10.1007/s11104-018-3750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3750-2

Keywords

Navigation