Skip to main content

Advertisement

Log in

Grass vs. tree origin of soil organic carbon under different land-use systems in the Brazilian Cerrado

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Silvopastoral management of tree plantations is becoming popular in Brazil. The impact of this practice on carbon dynamics of these soils is unknown, and predicting it is difficult because historical land-use records of the region do not exist. The objective of the study was to quantify the relative soil organic carbon (SOC) contributions of C3 and C4 plants in different land-use system.

Methods

We evaluated total δ13C, the contribution of C4 and C3-derived soil organic C in three fraction-size classes of soils in six land-use systems (Eucalyptus hybrid plantations established in 1985 and 2005; a native forest; silvopasture stands of Brachiaria brizantha under eucalyptus established in 1994 and 2004; and an open pasture), and undertook carbon dating (14C) for three of those systems, an Oxisol in Minas Gerais, Brazil. From each system, soil samples were collected from four depths (0–10, 10–20, 20–50, and 50–100 cm); samples were fractionated into 250–2000, 53–250, and <53 μm size classes, and their δ13C determined. Carbon dating (14C analysis) was done for whole soil samples from 0 to 10 cm and 50–100 cm depth classes of three land-use systems.

Results

The δ13C values increased (showing increase in C contribution by C4 plants, i.e., grasses) with soil depth at all sites and all size-classes. The older systems showed a higher contribution of C4-derived SOC at all depths. Carbon dating indicated that the area had been cleared about 300 years ago.

Conclusions

Silvopastoral and pasture systems can be considered as good carbon sinks. We infer that the study site was grassland with high proportion of C4 plants in the past, not a forest as it is today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alcântara FA, Buurman P, Furtini Neto AE et al (2004) Conversion of grassy cerrado into riparian forest and its impact on soil organic matter dynamics in an Oxisol from southeast Brazil. Geoderma 123:305–317. doi:10.1016/j.geoderma.2004.02.014

    Article  Google Scholar 

  • Alcântara V, Don A, Well R, Nieder R (2016) Deep ploughing increases agricultural soil organic matter stocks. Glob Chang Biol 22:2939–2956. doi:10.1111/gcb.13289

    Article  PubMed  Google Scholar 

  • Balesdent J, Mariotti A (1996) Measurement of Soil Organic Matter Turnover using 13C Natural Abundance. In: Boutton TW, Yamasaki SI (eds) Mass Spectrometry of Soils, 1st edn. Marcel Dekker Inc, New York, pp 83–111

    Google Scholar 

  • Balesdent J, Wagner GH, Mariotti A (1988) Soil Organic Matter Turnover in Long-term Field Experiments as Revealed by Carbon-13 Natural Abundance. Soil Sci Soc Am J 52:118. doi:10.2136/sssaj1988.03615995005200010021x

    Article  CAS  Google Scholar 

  • Biedenbender SH, Mcclaran MP, Quade J, Weltz MA (2004) Landscape patterns of vegetation change indicated by soil carbon isotope composition. Geoderma 119:69–83. doi:10.1016/S0016-7061(03)00234-9

    Article  Google Scholar 

  • Castellano MJ, Mueller KE, Olk DC et al (2015) Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Chang Biol 21:3200–3209. doi:10.1111/gcb.12982

    Article  PubMed  Google Scholar 

  • Choné T, Andreux F, Correa J (1991) Changes in organic matter in an Oxisol from Central Amazon forest during eight years as pasture determined by 13C isotopic composition. In: Berthelin J (ed) Diversity of Environmental Biogeochemistry, 1st edn. Elsevier, Boca Raton, pp 397–405

    Chapter  Google Scholar 

  • Coplen TB (1996) More uncertainty than necessary. Paleoceanography 11:369–370. doi:10.1029/96PA01420

    Article  Google Scholar 

  • Dawson TD, Mambelli S, Plamboek AH et al (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559. doi:10.1146/annurev.ecolsys.33.020602.095451

    Article  Google Scholar 

  • Desjardins T, Andreux F, Volkoff B, Cerri CC (1994) Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia. Geoderma Elsevier Sci BV 61:103–118

    Article  Google Scholar 

  • Desjardins T, Filho AC, Mariotti A et al (1996) Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratios of soil organic carbon. Oecologia 108:749–756. doi:10.1007/BF00329051

    Article  CAS  PubMed  Google Scholar 

  • Desjardins T, Barros E, Sarrazin M et al (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agric Ecosyst Environ 103:365–373. doi:10.1016/j.agee.2003.12.008

    Article  CAS  Google Scholar 

  • Doick KJ, Burauel P, Jones KC, Semple KT (2005) Distribution of Aged 14C−PCB and 14C−PAH Residues in Particle-Size and Humic Fractions of an Agricultural Soil. Environ Sci Technol 39:6575–6583. doi:10.1021/ES050523C

    Article  CAS  PubMed  Google Scholar 

  • Elliott E, Coleman D (1988) Let the Soil Work for Us. Ecol Bull 39:23–32

    Google Scholar 

  • Fearnside PM, Barbosa RI (1998) Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. For Ecol Manag Imbrozio Barbosar For Ecol Manag 108:147–166

    Article  Google Scholar 

  • February EC, Higgins SI (2010) The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. South African J Bot 76:517–523. doi:10.1016/j.sajb.2010.04.001

    Article  Google Scholar 

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116

    Article  CAS  Google Scholar 

  • Fisher MJ, Rao IM, Ayarza MA et al (1994) Carbon storage by introduced deep-rooted grasses in the South American\nsavannas. Nature 371:236–238

    Article  Google Scholar 

  • Gonzalez JM, Laird DA (2003) Carbon Sequestration in Clay Mineral Fractions from C-Labeled Plant Residues. Soil Sci Soc Am J 67:1715. doi:10.2136/sssaj2003.1715

    Article  CAS  Google Scholar 

  • Gouveia SE, Pessenda LC (2000) 14C dating of charcoal in the soil for the study of biological remount of soil matter and of the colluvium in the formation of ferralsols of São Paulo State, southern Brazil. Comptes Rendus l’Académie des Sci - Ser IIA - Earth Planet Sci 330:133–138. doi:10.1016/S1251-8050(00)00114-2

    Google Scholar 

  • Guareschi RF, Pereira MG, Perin A (2014) Carbono, nitrogênio e abundância natural de 13C e 15N em uma cronossequência de agricultura sob plantio direto no cerrado goiano. Rev Bras Ciência do Solo 38:1135–1142. doi:10.1590/S0100-06832014000400009

    Article  Google Scholar 

  • Gunina A, Kuzyakov Y (2014) Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance. Soil Biol Biochem 71:95–104. doi:10.1016/j.soilbio.2014.01.011

    Article  CAS  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon Storage of Different Soil-Size Fractions in Florida Silvopastoral Systems. J Environ Qual 37:1789. doi:10.2134/jeq2007.0509

    Article  CAS  PubMed  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob Chang Biol 16:427–438. doi:10.1111/j.1365-2486.2009.01981.x

    Article  Google Scholar 

  • Hipondoka MH, Aranibar JN, Chirara C et al (2003) Vertical distribution of grass and tree roots in arid ecosystems of Southern Africa: niche differentiation or competition? J Arid Environ 54:319–325. doi:10.1006/jare.2002.1093

    Article  Google Scholar 

  • IPCC (2013) Summary for Policymakers. Cambrige Univertity Press, Cambridge

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetaion. Ecol Appl 10:423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Joslin JD, Gaudinski JB, Torn MS et al (2006) Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14 C-labeled hardwood forest. New Phytol 172:523–535. doi:10.1111/j.1469-8137.2006.01847.x

    Article  CAS  PubMed  Google Scholar 

  • Liu M-Y, Chang Q-R, Qi Y-B et al (2014) Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. Catena 115:19–28. doi:10.1016/j.catena.2013.11.002

    Article  CAS  Google Scholar 

  • Miranda E, Carmo J, Couto E, Camargo P (2016) Long-Term Changes in Soil Carbon Stocks in the Brazilian Cerrado Under Commercial Soybean. L Degrad Dev 27:1586–1594. doi:10.1002/ldr.2473

    Article  Google Scholar 

  • Monroe PHM, Gama-Rodrigues EF, Gama-Rodrigues AC, Marques JRB (2016) Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agric Ecosyst Environ 221:99–108. doi:10.1016/j.agee.2016.01.022

    Article  Google Scholar 

  • Moraes JFL, Volkoff B, Cerri CC, Bemoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma 70:63–8.carte

    Article  Google Scholar 

  • Nair PKR (2013) Agroforestry: Trees in Support of Sustainable Agriculture. In: Elias SA, Marshall S, Goldstein M et al (eds) Reference Module in Earth Systems and Environmental Sciences. Elsevier, London, pp 33–44

    Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon Sequestration in Agroforestry Systems. Adv Agron 108:237–307. doi:10.1016/S0065-2113(10)08005-3

    Article  CAS  Google Scholar 

  • O’Leary MH (1988) Carbon Isotopes in Photosynthesis. Bioscience 38:328–336. doi:10.2307/1310735

    Article  Google Scholar 

  • Pessenda LCR, Melfi A, Telles EC et al (1996) The use of carbon isotopes 13C, 14C in soil to evaluate vegetation changes during the Holocene in Central Brazil. Rabiocarbon 38:191–201

    Article  CAS  Google Scholar 

  • Pessenda LCR, Gomes BM, Aravena R et al (1998a) The carbon isotope record in soils along a forest-cerrado ecosystem transect: implications for vegetation changes in the Rondonia state, southwestern Brazilian Amazon region. The Holocene 8:599–603. doi:10.1191/095968398673187182

    Article  Google Scholar 

  • Pessenda LCR, Gouveia SEM, Aravena R et al (1998b) 14C dating and stable carbon isotopes of soil organic matter in forest-savanna boundary areas in the southern brazilian amazon region. Radiocarbon 40:1013–1022

    Article  CAS  Google Scholar 

  • Pessenda LCR, Gouveia S, Aravena R (2001) Rabiocarbon dating of total soil organic matter and humin fraction and its coparison with 14C ages fossil charcoal. Radiocarbon 43:595–601

    Article  CAS  Google Scholar 

  • Roscoe R, Buurman P, Velthorst E, Vasconcellos C (2001) Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado’s oxisol. Geoderma 104:185–202. doi:10.1016/S0016-7061(01)00080-5

    Article  CAS  Google Scholar 

  • Saha SK, Nair PKR, Nair VD, Kumar BM (2009) Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor Syst 76:53–65. doi:10.1007/s10457-009-9228-8

    Article  Google Scholar 

  • Sayer EJ, Heard MS, Grant HK et al (2011) Soil carbon release enhanced by increased tropical forest litterfall. Nat Clim Chang 1:304–307. doi:10.1038/nclimate1190

    Article  CAS  Google Scholar 

  • Schwartz D, Mariotti A, Lanfranchi R, Guillet B (1986) 13C/12C Ratios of soil organic matter as indicators of vegetation changes in the congo. Geoderma 39:97–103. doi:10.1016/0016-7061(86)90069-8

    Article  CAS  Google Scholar 

  • Schwendenmann L, Pendall E (2006) Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama: evidence from soil carbon fractionation and stable isotopes. Plant Soil 288:217–232. doi:10.1007/s11104-006-9109-0

    Article  CAS  Google Scholar 

  • Sharrow SH, Brauer D, Clason T (2009) Silvopastoral Practices. In: Garret H (ed) North American Agroforetry: An Integrated Science and Practice, 2nd edn. American Society of Agronomy, Madson, pp 105–132

    Google Scholar 

  • Silva R de O, Barioni LG, JAJ H et al (2016) Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nat Clim Chang 6:493–497. doi:10.1038/nclimate2916

  • Stahl C, Freycon V, Fontaine S et al (2016) Soil carbon stocks after conversion of Amazonian tropical forest to grazed pasture: importance of deep soil layers. Reg Environ Chang 16:2059–2069. doi:10.1007/s10113-016-0936-0

    Article  Google Scholar 

  • Steinbeiss S, Bessler H, Engels C et al (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Chang Biol 14:2937–2949. doi:10.1111/j.1365-2486.2008.01697.x

    Article  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion reporting of 14C data. Radiocarbon 19:355–363

    Article  Google Scholar 

  • Tonucci RG, Nair PKR, Nair VD et al (2011) Soil Carbon Storage in Silvopasture and Related Land-Use Systems in the Brazilian Cerrado. J Environ Qual 40:833–841. doi:10.2134/jeq2010.0162

    Article  CAS  PubMed  Google Scholar 

  • Trouve C, Mariotti A, Schwartz D, Guillet B (1994) Soil organic carbon dynamics under Eucalyptus and Pinus planted on savannas in the Congo. Soil Biol Biochem 26:287–295. doi:10.1016/0038-0717(94)90169-4

    Article  Google Scholar 

  • Vicente LC, Gama-Rodrigues EF, Gama-Rodrigues AC (2016) Soil carbon stocks of Ultisols under different land use in the Atlantic rainforest zone of Brazil. Geoderma Reg 7:330–337. doi:10.1016/j.geodrs.2016.06.003

    Article  Google Scholar 

  • Yoo G, Yang X, Wander MM (2011) Influence of soil aggregation on SOC sequestration: A preliminary model of SOC protection by aggregate dynamics. Ecol Eng 37:487–495. doi:10.1016/j.ecoleng.2010.12.016

    Article  Google Scholar 

  • Zomer RJ, Neufeldt H, Xu J et al (2016) Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. doi:10.1038/srep29987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported in part by a grant from FAPEMIG (Fundação de Amparo à Pesqueisa do Estado de Minas Gerais, Brazil), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil). We are grateful to Jim Sickman for help with 14C isotopic analysis conducted at the Kerk Carbon Cycle AMS Faculty, Earth System Science Department, UC Irvine, USA. We thank all the individuals who participated in this research project especially Gabriel Rocha, Fernando Bernardino and Júlio Neves, at Federal University of Viçosa, Brazil, for soil sampling and statistical analysis and Kathy Curtis, at University of Florida, for δ13 C analysis. We also thank to Votorantim Siderurgia, Brazil, who let us use their farm as an experimental field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael G. Tonucci.

Additional information

Responsible Editor: Zucong Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonucci, R.G., Nair, V.D., Ramachandran Nair, P.K. et al. Grass vs. tree origin of soil organic carbon under different land-use systems in the Brazilian Cerrado. Plant Soil 419, 281–292 (2017). https://doi.org/10.1007/s11104-017-3347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3347-1

Keywords

Navigation