Skip to main content
Log in

Liquid bridges at the root-soil interface

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

The role of the root-soil interface on soil-plant water relations is unclear. Despite many experimental studies proved that the soil close to the root surface, the rhizosphere, has different properties compared to the adjacent bulk soil, the mechanisms underlying such differences are poorly understood and the implications for plant-water relations remain largely speculative.

Scope

The objective of this review is to identify the key elements affecting water dynamics in the rhizosphere. Special attention is dedicated to the role of mucilage exuded by roots in shaping the hydraulic properties of the rhizosphere. We identified three key properties: 1) mucilage adsorbs water decreasing its water potential; 2) mucilage decreases the surface tension of the soil solution; 3) mucilage increases the viscosity of the soil solution. These three properties determine the retention and spatial configuration of the liquid phase in porous media. The increase in viscosity and the decrease in surface tension (quantified by the Ohnesorge number) allow the persistence of long liquid filaments even at very negative water potentials. At high mucilage concentrations these filaments form a network that creates an additional matric potential and maintains the continuity of the liquid phase during drying.

Conclusion

The biophysical interactions between mucilage and the pore space determine the physical properties of the rhizosphere. Mucilage forms a network that provides mechanical stability to soils upon drying and that maintains the continuity of the liquid phase across the soil-root interface. Such biophysical properties are functional to create an interconnected matrix that maintains the roots in contact with the soil, which is of particular importance when the soil is drying and the transpiration rate is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed MA, Holz M, Woche SK, Bachmann J and Carminati A (2015) Effect of soil drying on mucilage exudation and its water repellency: a new method to collect mucilage. J Plant Nutr Soil Sci. doi:10.1002/jpln.201500177

  • Ahmed MA, Kroener E, Benard P, Zarebanadkouki M, Kaestner A, Carminati A (2016) Drying of mucilage causes water repellency in the rhizosphere of maize: measurements and modelling. Plant Soil 407:161–171. doi:10.1007/s11104-015-2749-1

  • Ahmed MA, Kroener E, Holz M, Zarebanadkouki M, Carminati A (2014) Mucilage exudation facilitates root water uptake in dry soils. Funct Plant Biol 41:1129–1137. doi:10.1071/FP13330

  • Albalasmeh AA, Ghezzehei TA (2013) Interplay between soil drying and root exudation in rhizosheath development. Plant Soil 374:739–751. doi:10.1007/s11104-013-1910-y

    Article  Google Scholar 

  • Benard P, Kroener E, Vontobel P, Kaestner A, Carminatia A (2015) Water percolation through the root-soil interface. Adv Water Resour. doi:10.1016/j.advwatres.2015.09.014

  • Bengough AG (2012) Water dynamics of the root zone: Rhizosphere biophysics and its control on soil hydrology. Vadose Zone J. doi:10.2136/vzj2011.0111

    Google Scholar 

  • Carminati A (2012) A model of root water uptake coupled with Rhizosphere dynamics. Vadose Zone J 11:0. doi: 10.2136/vzj2011.0106

  • Carminati A, Moradi AB, Vetterlein D, Vontobel P, Lehmann E, Weller U, Vogel H-J, Oswald SE (2010) Dynamics of soil water content in the rhizosphere. Plant Soil 332:163–176. doi:10.1007/s11104-010-0283-8

  • Carminati A, Vetterlein D, Koebernick, Blaser S, Weller U, Vogel H-J (2013) Do roots mind the gap? Plant Soil 367:651–661. doi:10.1007/s11104-012-1496-9

  • Carminati A, Zarebanadkouki M, Kroener E, Ahmed MA, Holz M (2016) Biophysical rhizosphere processes affecting root water uptake. Ann Bot 118:561–571. doi:10.1093/aob/mcw113

  • Castrejón-Pita AA, Castrejón-Pita JR, Hutchings IM (2012) Breakup of liquid filaments. Phys Rev Lett 108:074506. doi:10.1103/PhysRevLett.108.074506

  • Draye X, Kim Y, Lobet G, Javaux M (2010) Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. J Exp Bot 61:2145–2155. doi:10.1093/jxb/erq077

    Article  CAS  PubMed  Google Scholar 

  • Faiz SMA, Weatherley PE (1982) Root contraction in transpiring plants. New Phytol 92:333–343. doi:10.1111/j.1469-8137.1982.tb03391.x

  • Gardner WR (1960) Dynamic aspects of water availability to plants. Soil Sci 89:63–73. doi:10.1097/00010694-196002000-00001

    Article  Google Scholar 

  • George TS, Brown LK, Ramsay L, Newton AC, Bengough AG, Russell J and Thomas WTB (2014) Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol 203:195–205. doi:10.1111/nph.12786

  • Ghezzehei TA, Albalasmeh AA (2015) Spatial distribution of rhizodeposits provides built-in water potential gradient in the rhizosphere. Ecol Model 298:53–63. doi:10.1016/j.ecolmodel.2014.10.028

    Article  CAS  Google Scholar 

  • Guinel FC, McCully ME (1986) Some water-related physical properties of maize root-cap mucilage. Plant Cell Environ 9:657–666. doi:10.1111/j.1365-3040.1986.tb01624.x

    Article  Google Scholar 

  • Herkelrath WN, Miller EE, Gardner WR (1977) Water uptake by plants: II. The root contact model. Soil Sci Soc Am J 41:1039–1043. doi:10.2136/sssaj1977.03615995004100060004x

  • Huck MG, Klepper B, Taylor HM (1970) Diurnal variations in root diameter. Plant Physiol 45:529. doi:10.1104/pp.45.4.529

  • Kroener E, Ahmed MA, Carminati A (2015) Roots at the percolation threshold. Phys Rev E 91:42706. doi:10.1103/PhysRevE.91.042706

    Article  Google Scholar 

  • Kroener E, Zarebanadkouki M, Kaestner A, Carminati A (2014) Nonequilibrium water dynamics in the rhizosphere: how mucilage affects water flow in soils. Water Resour Res 50:6479–6495. doi:10.1002/2013WR014756

    Article  Google Scholar 

  • McCully ME (1999) ROOTS IN SOIL: unearthing the complexities of roots and their Rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718. doi:10.1146/annurev.arplant.50.1.695

    Article  CAS  PubMed  Google Scholar 

  • McCully ME, Boyer JS (1997) The expansion of maize root-cap mucilage during hydration. 3. Changes in water potential and water content. Physiol Plant 99:169–177. doi:10.1111/j.1399-3054.1997.tb03445.x

  • Moradi AB, Carminati A, Lamparter A, Woche SK, Bachmann J, Vetterlein D, Vogel H-J and Oswald SE (2012) Is the Rhizosphere temporarily water repellent? Vadose Zone J 11:0. doi: 10.2136/vzj2011.0120

  • Moradi AB, Carminati A, Vetterlein D, Vontobel P, Lehmann E, Weller U, Hopmans JW, Vogel H-J and Oswald SE (2011) Three-dimensional visualization and quantification of water content in the rhizosphere. New Phytol 192:653–663. doi:10.1111/j.1469-8137.2011.03826.x

  • Morris ER, Cutler AN, Ross-Murphy SB, Rees DA (1981) Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr Polym 1:5–21. doi:10.1016/0144-8617(81)90011-4

  • Oades JM (1978) Mucilages at the root surface. J Soil Sci 29:1–16. doi:10.1111/j.1365-2389.1978.tb02025.x

    Article  CAS  Google Scholar 

  • Oburger E, Schmidt H (2016) New methods to unravel Rhizosphere processes. Trends Plant Sci 21:243–255. doi:10.1016/j.tplants.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  • Ohnesorge WV (1936) Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. Z angew Math Mech 16:355–358. doi:10.1002/zamm.19360160611

  • Passioura JB (1980) The transport of water from soil to shoot in wheat seedlings. J Exp Bot 31:333–345. doi:10.1093/jxb/31.1.333

    Article  CAS  Google Scholar 

  • Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K and Zhang X (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326. doi: 10.1046/j.1469-8137.2003.00665.x

  • Read DB, Gregory PJ (1997) Surface tension and viscosity of axenic maize and lupin root mucilages. New Phytol 137:623–628. doi:10.1046/j.1469-8137.1997.00859.x

    Article  Google Scholar 

  • Read DB, Gregory PJ, Bell AE (1999) Physical properties of axenic maize root mucilage. Plant Soil 211:87–91. doi:10.1023/A:1004403812307

    Article  CAS  Google Scholar 

  • Roose T, Keyes SD, Daly KR, Carminati A, Otten W, Vetterlein D, Peth S (2016) Challenges in imaging and predictive modeling of rhizosphere processes. Plant Soil: 1–30. doi:10.1007/s11104-016-2872-7

  • Rosenzweig R, Shavit U, Furman A (2009) The influence of biofilm spatial distribution scenarios on hydraulic conductivity of unsaturated soils. Vadose Zone J 8:1080–1084. doi:10.2136/vzj2009.0017

    Article  Google Scholar 

  • Schwartz N, Carminati A, Javaux M (2015) The impact of mucilage on root water uptake – a numerical study. Water Resour Res. doi:10.1002/2015WR018150

    Google Scholar 

  • Volk E, Iden SC, Furman A, Durner W, and Rosenzweig R (2016) Biofilm effect on soil hydraulic properties: experimental investigation using soil-grown real biofilm. Water Resour Res 52:5813–5828. doi:10.1002/2016WR018866

  • Watt M, McCully ME, Canny MJ (1994) Formation and stabilization of Rhizosheaths of Zea mays L. (effect of soil water content). Plant Physiol 106:179–186. doi:10.1104/pp.106.1.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willett CD, Adams MJ, Johnson SA, Seville JPK (2000) Capillary bridges between two spherical bodies. Langmuir 16(24):9396–9405. doi:10.1021/la000657y

  • York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ (2016) The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. J Exp Bot. 67(12): 3629–3643. doi:10.1093/jxb/erw108

  • Young IM (1995) Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol 130:135–139. doi:10.1111/j.1469-8137.1995.tb01823.x

  • Zickenrott I-M, Woche SK, Bachmann J, Ahmed MA and Vetterlein D (2016) An efficient method for the collection of root mucilage from different plant species—a case study on the effect of mucilage on soil water repellency. J Plant Nutr Soil Sci. doi:10.1002/jpln.201500511

Download references

Acknowledgements

The position of Pascal Benard is funded by the Volkswagen Stiftung (VWZN3152). We acknowledge the DFG for funding the position of Mutez A. Ahmed, project CA921/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Carminati.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carminati, A., Benard, P., Ahmed, M.A. et al. Liquid bridges at the root-soil interface. Plant Soil 417, 1–15 (2017). https://doi.org/10.1007/s11104-017-3227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3227-8

Keywords

Navigation