Skip to main content

Advertisement

Log in

Biochar from Miscanthus: a potential silicon fertilizer

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Silicon (Si) is largely recognized to improve plant growth subjected to various biotic and abiotic stresses. As plants accumulate Si in the form of readily-soluble phytolith, we examine the possibility of using phytolith-rich biochar as a bio-available Si source for increasing the agronomical productivity of Si high-accumulator plants while augmenting soil fertility and C sequestration.

Methods

By adding three different biochars (Miscanthus x giganteus straws, coffee husks and woody material) at two different concentrations (1 % and 3 %; w/w) to soil samples, we investigated the effects on the soil respiration, the chemical characteristics and the kinetic release of bio-available Si (CaCl2-extractable Si).

Results

Here we show that the biochar from Miscanthus straws was the most attractive amendment. Its incorporation at a 3 % rate improved the soil fertility parameters (pH and available cations) and combined the highest mean residence time of carbon (C) in soil (MRT = 50 years) with the highest rate of release of bio-available Si. We attribute this result to the presence of phytoliths in this biochar, as revealed by SEM-EDS analysis.

Conclusions

Not only did the biochar from Miscanthus enhance both soil C sequestration and fertility, but the results of this study suggest that it can also be considered as a potential source of bio-available Si. Although our conclusions should be substantiated in the field, we suggest that Miscanthus biochar could be used as a potential source of bio-available silicon for the culture of such crop as Si-accumulator plants growing, for instance, in highly weathered tropical soils with low content in carbon, nutrients and bio-available Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33(9):1093–1109

    Article  CAS  Google Scholar 

  • Beckwith RS, Reeve R (1963) Studies on soluble silica in soils. I. The sorption of silicic acid by soils and minerals. Soil Res 1(2):157–168

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282. doi:10.1016/j.envpol.2011.07.023

    Article  CAS  PubMed  Google Scholar 

  • Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93(4):402–412. doi:10.1094/phyto.2003.93.4.402

    Article  PubMed  Google Scholar 

  • Berthelsen S, Noble A, Garside A (2001) Silicon reasearch down under: past, preseent, and future. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier Sciences, Amsterdam, pp 241–255

    Chapter  Google Scholar 

  • Berthelsen S, Noble A, Kingston G, Hurney A, Rudd A, Garside A (2003) Improving yield and ccs in sugarcane through the application of silicon based amendments. Final report on SRDC Project CLW009

  • Bolan NS, Kunhikrishnan A, Choppala GK, Thangarajan R, Chung JW (2012) Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Sci Total Environ 424:264–270. doi:10.1016/j.scitotenv.2012.02.061

    Article  CAS  PubMed  Google Scholar 

  • Brändli RC, Hartnik T, Henriksen T, Cornelissen G (2008) Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Chemosphere 73(11):1805–1810. doi:10.1016/j.chemosphere.2008.08.034

    Article  PubMed  Google Scholar 

  • Brewer C, Unger R, Schmidt-Rohr K, Brown R (2011) Criteria to select biochars for field studies based on biochar chemical properties. BioEnergy Res 4(4):312–323. doi:10.1007/s12155-011-9133-7

    Article  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79. doi:10.1016/j.soilbio.2011.11.019

    Article  CAS  Google Scholar 

  • Catinon M, Ayrault S, Boudouma O, Asta J, Tissut M, Ravanel P (2009) The inclusion of atmospheric particles into the bark suber of ash trees. Chemosphere 77(10):1313–1320

    Article  CAS  PubMed  Google Scholar 

  • Catinon M, Ayrault S, Spadini L, Boudouma O, Asta J, Tissut M, Ravanel P (2011) Tree bark suber-included particles: a long-term accumulation site for elements of atmospheric origin. Atmos Environ 45(5):1102–1109

    Article  CAS  Google Scholar 

  • Chao TT, Sanzolone RF (1992) Decomposition techniques. J Geochem Explor 44:65–106

  • Chapman HD (1965) Cation exchange capacity. In: Black CA (ed) Methods of soil analysis: Part 1, physical and mineralogical methods. American Society of Agronomy and Soil Science Society of America, Madison, pp 891–901

    Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488. doi:10.1016/j.orggeochem.2006.06.022

    Article  CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Engelhard MH (2008a) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610. doi:10.1016/j.gca.2008.01.010

    Article  CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD (2008b) Stability of black carbon in soils across a climatic gradient. J Geophys Res 113(G2), G02027. doi:10.1029/2007jg000642

    Google Scholar 

  • Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44(2):265–268

    Article  CAS  Google Scholar 

  • Cornelis JT, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378

    Google Scholar 

  • Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43(10):2127–2134. doi:10.1016/j.soilbio.2011.06.016

    Article  CAS  Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988):1669–1678

    Article  CAS  PubMed  Google Scholar 

  • Datnoff LE, Seedbold KW, Correa VFJ (2001) The use of silicon for integrated disease management: reducing fungicide applications and enhancing host plant resistance. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier Sciences, Amsterdam, pp 171–184

    Chapter  Google Scholar 

  • Datnoff LE, Rodrigues FA, Seebold KW (2007) Silicon and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. American Phytopathological Society Press, St. Paul, pp 233–246

    Google Scholar 

  • Dove PM (1995) Kinetic and thermodynamic controls on silica reactivity in weathering environments. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Review in mineralogy. Mineralogical Society of America, Washington, pp 235–290

  • Drees LR, Wilding LP, Smeck NE, Sankayi AL (1989) Silica in soils: quartz and disordered silica polymorphs. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison

    Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91(1):11–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50(1):641–664. doi:10.1146/annurev.arplant.50.1.641

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (2001) Silicon in plants: facts vs. concepts. In: Datnoff LE, Korndörfer GHS (eds) Silicon in agriculture (Studies in plant science), vol 8. Elsevier, pp 1–15. doi:10.1016/s0928-3420(01)80005-7

  • Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70(8):1939–1951. doi:10.1016/j.gca.2005.12.025

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206

    Google Scholar 

  • Gascho GJ (2001) Silicon sources for agriculture. In: Datnoff LE, Korndörfer GHS (eds) Silicon in agriculture (Studies in plant science), vol 8. Elsevier, pp 197–207. doi:10.1016/s0928-3420(01)80016-1

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol Fertil Soils 35(4):219–230. doi:10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Grove JH, Sumner ME, Syers JK (1981) Effect of ime on exchangeable magnesium in variable surface charge soils. Soil Sci Soc Am J 45(3):497–500

    Article  CAS  Google Scholar 

  • Guntzer F, Keller C, Meunier J-D (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32(1):201–213. doi:10.1007/s13593-011-0039-8

    Article  Google Scholar 

  • Haynes RJ, Belyaeva ON, Kingston G (2013) Evaluation of industrial wastes as sources of ferilizer silicon using chemical extractions and plant uptake. J Plant Nutr Soil Sci 176:238–248

    Article  CAS  Google Scholar 

  • Haysom MBC, Chapman LS (1975) Some aspects of the calcium silicate trials at Mackay. Proc Austr Sugar Cane Technol 42:117–122

    CAS  Google Scholar 

  • Hilscher A, Heister K, Siewert C, Knicker H (2009) Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org Geochem 40(3):332–342. doi:10.1016/j.orggeochem.2008.12.004

    Article  CAS  Google Scholar 

  • Hodson MJ, Evans DE (1995) Aluminium/silicon interactions in higher plants. J Exp Bot 46(2):161–171

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457. doi:10.1016/j.chemosphere.2013.03.055

    Article  CAS  PubMed  Google Scholar 

  • Houben D, Evrard L, Sonnet P (in press) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenerg. doi:10.1016/j.biombioe.2013.07.019

  • Jalali M (2006) Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran. Geoderma 135:63–71. doi:10.1016/j.geoderma.2005.11.006

    Article  CAS  Google Scholar 

  • Korndörfer GH, Lepsch I (2001) Effect of silicon on plant growth and crop yield. In: Datnoff LE, Korndörfer GHS (eds) Silicon in agriculture (Studies in plant science), vol 8. Elsevier, pp 133–147. doi:10.1016/s0928-3420(01)80011-2

  • Krull ES, Skjemstad JO, Graetz D, Grice K, Dunning W, Cook G, Parr JF (2003) 13C-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths. Org Geochem 34(9):1337–1352. doi:10.1016/s0146-6380(03)00100-1

    Article  CAS  Google Scholar 

  • Kuhlbusch TAJ (1998) Black carbon and the carbon cycle. Science 280(5371):1903–1904

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219. doi:10.1016/j.soilbio.2008.10.016

    Article  CAS  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100(1):178–181

    Article  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3–4):436–442. doi:10.1016/j.geoderma.2010.05.012

    Article  CAS  Google Scholar 

  • Lehmann J (2007a) Bio-energy in the black. Front Ecol Environ 5(7):381–387. doi:10.1890/1540-9295(2007)5[381:bitb]2.0.co;2

    Article  Google Scholar 

  • Lehmann J (2007b) A handful of carbon. Nature 447(7141):143–144

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management - an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management - science and technology. Earthscan, London, pp 1–12

    Google Scholar 

  • Lehmann J, Pereira da Silva J, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249(2):343–357. doi:10.1023/a:1022833116184

    Article  CAS  Google Scholar 

  • Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in the soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management - science and technology. Earthscan, London, pp 183–205

    Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428. doi:10.1016/j.envpol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Liu K-B (2003) Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States. Divers Distrib 9(1):73–87. doi:10.1046/j.1472-4642.2003.00166.x

    Article  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50(1):11–18. doi:10.1080/00380768.2004.10408447

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • McKeague JA, Cline MG (1963) Silica in soil solutions: II. The adsorption of monosilicic acid by soil and by other substances. Can J Soil Sci 43(1):83–96. doi:10.4141/cjss63-011

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174(2):105–112

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2):322–331. doi:10.2307/1932179

    Article  Google Scholar 

  • Parr JF, Sullivan LA (2005) Soil carbon sequestration in phytoliths. Soil Biol Biochem 37(1):117–124. doi:10.1016/j.soilbio.2004.06.013

    Article  CAS  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62(1):42–55

    Article  CAS  Google Scholar 

  • Qiu LP, Zhang XC, Cheng JM, Han XN (2010) Isotherms and kinetics of si adsorption in soils. Acta Agric Scand Sect B Soil Plant Sci 60(2):157–165

    CAS  Google Scholar 

  • Rodella AA, Saboya LV (1999) Calibration for conductimetric determination of carbon dioxide. Soil Biol Biochem 31(14):2059–2060. doi:10.1016/s0038-0717(99)00046-2

    Article  CAS  Google Scholar 

  • Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plantavailable and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cycles 14(3):777–793. doi:10.1029/1999gb001208

    Article  CAS  Google Scholar 

  • Schmidt MWI, Skjemstad JO, Gehrt E, Kögel-Knabner I (1999) Charred organic carbon in German chernozemic soils. Eur J Soil Sci 50(2):351–365

    Article  Google Scholar 

  • Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175(3):410–422

    Article  CAS  Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Soil Res 34(2):251–271

    Article  CAS  Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42(12):2345–2347. doi:10.1016/j.soilbio.2010.09.013

    Article  CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41(6):1301–1310. doi:10.1016/j.soilbio.2009.03.016

    Article  CAS  Google Scholar 

  • Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 85–102

  • Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371(6500):783–785

    Article  CAS  Google Scholar 

  • Toor GS, Bahl GS (1999) Kinetics of phosphate desorption from different soils as influenced by application of poultry manure and fertilizer phosphorus and its uptake by soybean. Bioresour Technol 69(2):117–121. doi:10.1016/s0960-8524(98)00179-5

    Article  CAS  Google Scholar 

  • Vatehová Z, Kollárová K, Zelko I, Richterová-Kučerová D, Bujdoš M, Lišková D (2012) Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia 67(3):498–504. doi:10.2478/s11756-012-0034-9

    Article  Google Scholar 

  • Vermeire M-L, Kablan L, Dorel M, Delvaux B, Risède J-M, Legrève A (2011) Protective role of silicon in the banana-Cylindrocladium spathiphylli pathosystem. Eur J Plant Pathol 131(4):621–630. doi:10.1007/s10658-011-9835-x

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    Google Scholar 

  • Yuan J-H, Xu R-K, Qian W, Wang R-H (2011) Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J Soils Sediments 11:741–750

    Google Scholar 

  • Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano TM, Miltner A, Schroth G (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79(1–4):117–161. doi:10.1016/s0016-7061(97)00040-2

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43(6):1169–1179. doi:10.1016/j.soilbio.2011.02.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Populaire, M. Marteleur, A. Iserentant and C. Givron (UCL) for laboratory assistance. Cynthia Rozewicz is gratefully acknowledged for proofreading the manuscript. D. Houben was supported by the “Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture” (FRIA) of Belgium. J-T. Cornelis is supported by “Fonds National de la Recherche Scientifique » (FNRS) of Belgium. This research was also supported by the “Fonds Spécial de Recherche” of the UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Thomas Cornelis.

Additional information

Responsible Editor: Yong Chao Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houben, D., Sonnet, P. & Cornelis, JT. Biochar from Miscanthus: a potential silicon fertilizer. Plant Soil 374, 871–882 (2014). https://doi.org/10.1007/s11104-013-1885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1885-8

Keywords

Navigation