Skip to main content
Log in

15N fractionation between vegetation, soil, faeces and wool is not influenced by stocking rate

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Understanding stable isotope fractionation in trophic networks is important for the interpretation of stable isotope composition of ecosystem components. This work explores the influence of grazing pressure on the nitrogen isotope composition (δ 15N) of vegetation (standing biomass), soil, and sheep’s faeces and wool in a three-years (2005–2007) experiment with different stocking rates (0.375–2.25 sheep ha-1 year-1) in semi-arid Inner Mongolia grassland. The 15N of wool (from a yearly shearing) reflects vegetation at the whole-year grazing grounds-scale while faeces reflect that of the area grazed within a few days. Stocking rate had no effect on δ 15N of vegetation and soil, and sheep’s faeces and wool, although nitrogen content of bulk vegetation increased with stocking rate. Furthermore, δ 15N of vegetation and diet did not differ between stocking rates. Hence, 15N fractionations between vegetation and faeces (εveg-faeces), vegetation and wool (ε veg-wool), faeces and soil (ε faeces-soil) and soil and vegetation (ε soil-veg) were constants, with ε veg-faeces = 3.0‰ (±0.1‰, 95% confidence interval), ε veg-wool = 5.3‰ (±0.1‰), ε faeces-soil = 1.1‰ (±0.4‰) and ε soil-veg = -4.1‰ (±0.3‰). This finding is useful as it means that δ 15N of wool or faeces can be used to estimate the 15N of grazed vegetation, even if grazing pressure is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams TS, Sterner RW (2000) The effect of dietary nitrogen content on trophic level 15N enrichment. Limnol Oceanogr 45:601–607

    Article  CAS  Google Scholar 

  • Amundson R, Austin AT, Schuur EAG et al. (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cy 17:1013

    Article  Google Scholar 

  • Auerswald K, Wittmer MHOM, Männel TT, Bai YF, Schäufele R, Schnyder H (2009) Large regional-scale variation in C3/C4 distribution pattern of Inner Mongolia grassland is revealed by grazer wool carbon isotope composition. Biogeosciences 6:795–805

    Article  CAS  Google Scholar 

  • Auerswald K, Mayer F, Schnyder H (2010) Coupling of spatial and temporal pattern of cattle excreta patches on a low intensity pasture. Nutr Cycl Agroecosys. doi:10.1007/s10705-009-93621-4

    Google Scholar 

  • Augustine DJ, Frank DA (2001) Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82:3149–3162

    Article  Google Scholar 

  • Augustine DJ, McNaughton SJ, Frank DA (2003) Feedbacks between soil nutrients and large herbivores in a managed savanna ecosystem. Ecol Appl 13:1325–1337

    Article  Google Scholar 

  • Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004) Ecosystem stability and compensatory effect in the Inner Mongolia grassland. Nature 431:181–184

    Article  CAS  PubMed  Google Scholar 

  • Burke IC (1999) Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems 2:422–438

    Article  CAS  Google Scholar 

  • Cerling TE, Wittemyer G, Ehleringer JR, Remien CH, Douglas-Hamilton I (2009) History of animals using isotope records (HAIR): A 6-year dietary history of one family of African elephants. Proc Natl Acad Sci USA 106:8093–8100

    CAS  PubMed  Google Scholar 

  • Chen S, Bai Y, Lin G, Huang J, Han X (2007) Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China. J Arid Environ 71:12–28

    Article  Google Scholar 

  • Cheng WX, Chen QS, Xu YQ, Han XG, Li LH (2009) Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: Contrasting regional patterns and global patterns. Global Biogeochem Cy 23:GB2005. doi:10.1029/2008GB003315

  • Craine JM, Ballantyne F, Peel M, Zambatis N, Morrow C, Stock WD (2009a) Grazing and landscape controls on nitrogen availability across 330 South African savanna sites. Austral Ecol 34:731–740

    Article  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM et al (2009b) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  CAS  PubMed  Google Scholar 

  • De Niro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Act 45:341–351

    Article  Google Scholar 

  • Del Rio CM, Wolf BO (2005) Mass balance models for animal isotope ecology. In: Starck MA, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science, Enfield, pp 141–174

    Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Article  Google Scholar 

  • Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in aridlands—evidence from δ15N of soils. Oecologia 94:314–317

    Article  Google Scholar 

  • Fernandez-Gimenez M, Allen-Diaz B (2001) Vegetation change along gradients from water sources in three grazed Mongolian ecosystems. Plant Ecol 157:101–118

    Article  Google Scholar 

  • Frank DA, Evans RD (1997) Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology 78:2238–2248

    Article  Google Scholar 

  • Frank DA, Evans RD, Tracy BF (2004) The role of ammonia volatilization in controlling the natural 15N abundance of a grazed grassland. Biogeochemistry 68:169–178

    Article  CAS  Google Scholar 

  • Grant SA, Suckling DE, Smith HK, Torvell L, Forbes TDA, Hodgson J (1985) Comparative studies of diet selection by sheep and cattle: the hill grasslands. J Ecol 73:987–1004

    Article  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Holst J, Liu CY, Brüggemann N et al. (2007) Microbial N turnover and N-oxide (N2O / NO / NO2) fluxes in semi-arid grassland of Inner Mongolia. Ecosystems 10:623–634

    Article  CAS  Google Scholar 

  • Kerley SJ, Jarvis SC (1996) Preliminary studies of the impact of excreted N on cycling and uptake of N in pasture systems using natural abundance stable isotope discrimination. Plant Soil 178:287–294

    Article  CAS  Google Scholar 

  • Kahmen A, Wanek W, Buchmann N (2008) Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along temperate grassland gradients. Oecologia 156:861–870

    Article  PubMed  Google Scholar 

  • Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang SP (2005) Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agr Ecosyst Environ 107:83–93

    Article  Google Scholar 

  • Kohzu A, Iwata T, Kato M, Nishikawa J, Wada E, Amartuvshin N, Namkhaidorj B, Fujita N (2009) Food webs in Mongolian grasslands: the analysis of C-13 and N-15 natural abundances. Isot Environ Health Stud 45:208–219

    Article  CAS  Google Scholar 

  • Ledgard SF, Steele KW (1992) Biological nitrogen fixation in mixed legume/grassland pastures. Plant Soil 141:137–153

    Article  CAS  Google Scholar 

  • Liang C, Michalk DL, Millar GD (2002) The ecology and growth patterns of Cleistogenes species in degraded grassland of eastern Inner Mongolia, China. J Appl Ecol 39:584–594

    Article  Google Scholar 

  • Liu Y (1993) A study on the dynamic features of nutritive materials in Inner Mongolia steppe. Grasslands in China 4:16–20

    Google Scholar 

  • Lu CD (1988) Grazing behaviour and diet selection of goats. Small Ruminant Res 1:205–216

    Article  Google Scholar 

  • Ma XZ, Wang SP, Jiang GM, Haneklaus S, Schnug E, Nyren P (2007) Short-term effect of targeted placements of sheep excrement on grassland in Inner Mongolia on soil and plant parameters. Commun Soil Sci Plant Anal 38:1589–1604

    Article  CAS  Google Scholar 

  • Handley LL, Odee D, Scrimgeour CM (1994) δ15N and δ13C patterns in savanna vegetation—dependence on water availability and disturbance. Fun Ecol 8:306–314

    Article  Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principle; illustration for the denitrification and nitrification process. Plant Soil 62:413–430

    Article  CAS  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen. Ann Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Männel TT, Auerswald K, Schnyder H (2007) Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Glob Ecol Biogeogr 16:583–592

    Article  Google Scholar 

  • Pearson SF, Levey DJ, Greenberg CH, Del Rio CM (2003) Effects of elemental composition in the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135:516–523

    PubMed  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN: 3-900051-07-0, www.r-project.com

  • Robbins CT, Felicetti LA, Sponheimer M (2005) The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144:534–540

    Article  PubMed  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  PubMed  Google Scholar 

  • Sachs L, Hedderich J (2006) Angewandte Statistik—Methodensammlung mit R. Springer, Berlin

    Google Scholar 

  • Schnyder H, Locher F, Auerswald K (2010) Nutrient cycling by grazing cattle controls soil N and P patterns and vegetation nutrient status in a low-input pasture ecosystem. Nutr Cycl Agroecosys. doi:10.1007/s10705-009-9334-z

    Google Scholar 

  • Schwertl M, Auerswald K, Schnyder H (2003) Reconstructing the isotopic history of animal diets by hair segmental analysis. Rapid Commun Mass Sp 17:1312–1318

    Article  CAS  Google Scholar 

  • Schwertl M, Auerswald K, Schäufele R, Schnyder H (2005) Carbon and nitrogen stable isotope composition of cattle hair: ecological fingerprints of productions systems? Agr Ecosyst Environ 109:153–165

    Article  CAS  Google Scholar 

  • Sponheimer M, Robinson TF, Roeder BL et al. (2003a) An experimental study of nitrogen flux in llamas: is 14N preferentially excreted? J Archeol Sci 30:1649–1655

    Article  Google Scholar 

  • Sponheimer M, Robinson T, Ayliffe L et al (2003b) Nitrogen isotopes in mammalian herbivores: hair δ 15N values from a controlled feeding study. Int J Osteoarchaeol 13:80–87

    Article  Google Scholar 

  • Stevens RJ, Laughlin RJ (1998) Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutr Cycl Agroecosyst 52:131–139

    Article  CAS  Google Scholar 

  • Sutoh M, Koyama T, Yoneyama T (1987) Variations of natural 15N abundance in the tissues and digesta of domestic animals. Radioisotopes 36:74–77

    CAS  PubMed  Google Scholar 

  • Sutoh M, Obara Y, Yoneyama T (1993) The effects of feeding regime and dietary sucrose supplementation on natural abundance of 15N in some components of ruminal fluid and plasma of sheep. J Anim Sci 71:226–231

    CAS  PubMed  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ 15N enrichment: a meta analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant. Comstock, New York

    Google Scholar 

  • Watzka M, Buchgraber K, Wanek W (2006) Natural 15N abundance of plants and soils under different management practices in a montane grassland. Soil Biol Biochem 38:1564–1576

    Article  CAS  Google Scholar 

  • Weston RH (1988) Factors limiting the intake of feed by sheep. XII Digesta load and chewing activities in relation to lactation and its attendant increase in voluntary roughage consumption. Aust J Agric Res 39:671–677

    Article  Google Scholar 

  • Wittmer MHOM, Auerswald K, Schönbach P et al. (2010) Do grazer hair and faeces reflect the carbon isotope composition of semi-arid C3/C4 grasslands? Basic Appl Ecol 11:83–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Deutsche Forschungsgemeinschaft within the Forschungsgruppe 536 MAGIM. We thank Dr. K. Müller, Dr. T. Glindemann and H. Yang for providing samples and M. Michler and A. Schmidt for assistance with sample preparation. Dr. R. Schäufele is thanked for assistance with isotope analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Auerswald.

Additional information

Responsible Editor: Klaus Butterbach-Bahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmer, M.H.O.M., Auerswald, K., Schönbach, P. et al. 15N fractionation between vegetation, soil, faeces and wool is not influenced by stocking rate. Plant Soil 340, 25–33 (2011). https://doi.org/10.1007/s11104-010-0411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0411-5

Keywords

Navigation