Skip to main content

Advertisement

Log in

Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Production of extracellular enzymes participating in the degradation of biopolymers was studied in 29 strains of nonbasidiomycetous microfungi isolated from Quercus petraea forest soil based on the frequency of occurrence. Most of the isolates were ascomycetes and belonged to the genera Acremonium, Alternaria, Cladosporium, Geomyces, Hypocrea, Myrothecium, Ochrocladosporium, and Penicillium (18 isolates), and two isolates were zygomycetes. Only six isolates showed phenol oxidation activity which was low and none of the strains were able to degrade humic acids. Approximately half of the strains were able to degrade cellulose and all but six degraded chitin. Most strains produced significant amounts of the cellulolytic enzymes cellobiohydrolase and β-glucosidase and the chitinolytic enzymes chitinase, chitobiosidase, and N-acetylglucosaminidase. The highest cellulase activities were found in Penicillium strains, and the highest activity of chitinolytic enzymes was found in Acremonium sp. The production of the hemicellulose-degrading enzymes α-galactosidase, β-galactosidase, and α-mannosidase was mostly low. The microfungal strains were able to produce significant growth on a range of 41–87, out of 95 simple C-containing substrates tested in a Biolog™ assay, monosaccharides being for all strains the most rapidly metabolized C-sources. Comparison with saprotrophic basidiomycetes from the same environment showed that microfungi have similar cellulolytic capabilities and higher chitinase activities which testifies for their active role in the decomposition of both lignocellulose and dead fungal biomass, important pools of soil carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid

AMC:

7-aminomethyl-4-coumarin

CCBAS:

Culture Collection of Basidiomycetes

ITS:

Internal Transcribed Spacer

MEA:

Malt Extract Agar

MnP:

Mn-peroxidase

MUF:

4-methylumbelliferol

References

  • Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M (2006) Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of microbial community. Microb Ecol 52:127–135

    Article  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2008a) Enzymes of saprotrophic basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Academic, Amsterdam, pp 19–41

    Chapter  Google Scholar 

  • Baldrian P (2008b) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Baldrian P (2009a) Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161:657–660

    Article  PubMed  Google Scholar 

  • Baldrian P (2009b) Microbial enzyme-catalysed processes in soils and their analysis. Plant Soil Environ 55:370–378

    CAS  Google Scholar 

  • Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P, Valášková V, Merhautová V, Gabriel J (2005) Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Res Microbiol 156:670–676

    Article  CAS  PubMed  Google Scholar 

  • Bhiri F, Chaabouni SE, Limam F, Ghrir R, Marzouki N (2008) Purification and biochemical characterization of extracellular β-glucosidases from the hypercellulolytic pol6 mutant of Penicillium occitanis. Appl Biochem Biotechnol 149:169–182

    Article  CAS  PubMed  Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  PubMed  Google Scholar 

  • Chavez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 123:413–433

    Article  CAS  PubMed  Google Scholar 

  • Claus H, Filip Z (1998) Degradation and transformation of aquatic humic substances by laccase-producing fungi Cladosporium cladosporioides and Polyporus versicolor. Acta Hydrochim Hydrobiol 26:180–185

    Article  CAS  Google Scholar 

  • Daynes CM, McGee PA, Midgley DJ (2008) Utilisation of plant cell-wall polysaccharides and organic phosphorus substrates by isolates of Aspergillus and Penicillium isolated from soil. Fungal Ecol 1:94–98

    Article  Google Scholar 

  • De Bellis T, Kernaghan G, Widden P (2007) Plant community influences on soil microfungal assemblages in boreal mixed-wood forests. Mycologia 99:356–367

    Article  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • de la Cruz J, Hidalgo-Gallego A, Lora JM, Benitez T, Pintortoro JA, Llobell A (1992) Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206:859–867

    Article  PubMed  Google Scholar 

  • de la Cruz TEE, Schulz BE, Kubicek CP, Druzhinina IS (2006) Carbon source utilization by the marine Dendryphiella species D. arenaria and D. salina. FEMS Microbiol Ecol 58:343–353

    Article  Google Scholar 

  • Deacon LJ, Pryce-Miller EJ, Frankland JC, Bainbridge BW, Moore PD, Robinson CH (2006) Diversity and function of decomposer fungi from a grassland soil. Soil Biol Biochem 38:7–20

    Article  CAS  Google Scholar 

  • Druzhinina IS, Schmoll M, Seiboth B, Kubicek CP (2006) Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 72:2126–2133

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  PubMed  Google Scholar 

  • Gramss G, Ziegenhagen D, Sorge S (1999) Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes. Microb Ecol 37:140–151

    Article  CAS  PubMed  Google Scholar 

  • Grishkan IB (1996) Soil micromycetes of birch and aspen forests in the upper Kolyma River basin. Mikol Fitopatol 30:28–35

    Google Scholar 

  • Hao JJ, Tian XJ, Song FQ, He XB, Zhang ZJ, Zhang P (2006) Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest. J Eukaryot Microbiol 53:193–198

    Article  CAS  PubMed  Google Scholar 

  • Hatakka A (2001) Biodegradation of Lignin. In: Steinbüchel A, Hofrichter M (eds) Biopolymers 1: lignin, humic substances and coal. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hayashi K, Nimura Y, Miyaji T, Ohara N, Uchimura T, Suzuki H, Komagata K, Kozaki M (1997) Purification and properties of a low-temperature-active enzyme degrading both cellulose and xylan from Acremonium alcalophilum JCM 7366. Seibutsu-Kogaku Kaishi 75:9–14

    CAS  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Ku U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Article  CAS  PubMed  Google Scholar 

  • Hršelová H, Chvátalová I, Vosátka M, Klír J, Gryndler M (1999) Correlation of abundance of arbuscular mycorrhizal fungi, bacteria and saprotrophic microfungi with soil carbon, nitrogen and phosphorus. Folia Microbiol 44:683–687

    Article  Google Scholar 

  • Ikeda Y, Hayashi H, Okuda N, Park EY (2007) Efficient cellulase production by the filamentous fungus Acremonium cellulolyticus. Biotechnol Prog 23:333–338

    Article  CAS  PubMed  Google Scholar 

  • Keller L, Bidochka MJ (1998) Habitat and temporal differences among soil microfungal assemblages in Ontario. Can J Bot 76:1798–1805

    Article  Google Scholar 

  • Kjoller A, Struwe S (2002) Fungal communities, succession, enzymes, and decomposition. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 267–284

    Google Scholar 

  • Lindahl BD, Finlay RD (2006) Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi. New Phytol 169:389–397

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506

    Article  CAS  PubMed  Google Scholar 

  • Mamma D, Kourtoglou E, Christakopoulos P (2008) Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour Technol 99:2373–2383

    Article  CAS  PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barbote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern I, Klopman S, Hibbett D (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J Mol Evol 66:243–257

    Article  CAS  PubMed  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427

    Article  CAS  Google Scholar 

  • Osono T, Takeda H (2006) Fungal decomposition of Abies needle and Betula leaf litter. Mycologia 98:172–179

    Article  CAS  PubMed  Google Scholar 

  • Paul EA, Mathur SP (1967) Cleavage of humic acids by Penicillium frequentans. Plant Soil 27:297–299

    Article  CAS  Google Scholar 

  • Rast DM, Horsch M, Furter R, Gooday GW (1991) A complex chitinolytic system in exponentially growing mycelium of Mucor rouxii—properties and function. J Gen Microbiol 137:2797–2810

    CAS  PubMed  Google Scholar 

  • Řezáčová V, Hršelová H, Gryndlerová H, Mikšík I, Gryndler M (2006) Modifications of degradation-resistant soil organic matter by soil saprobic microfungi. Soil Biol Biochem 38:2292–2299

    Article  Google Scholar 

  • Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42

    Article  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264

    PubMed  Google Scholar 

  • Skare NH, Paus F, Raa J (1975) Production of pectinase and cellulase by Cladosporium cucumerinum with dissolved carbohydrates and isolated cell walls of cucumber as carbon sources. Physiol Plant 33:229–233

    Article  CAS  Google Scholar 

  • Smith RE (1977) Rapid tube test for detecting fungal cellulase production. Appl Environ Microbiol 33:980–981

    CAS  PubMed  Google Scholar 

  • Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P (2008) Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol Biochem 40:2068–2075

    Article  Google Scholar 

  • Somkuti GA (1974) Synthesis of cellulase by Mucor pusillus and Mucor miehei. J Gen Microbiol 81:1–6

    CAS  PubMed  Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  CAS  PubMed  Google Scholar 

  • Steffen KT, Cajthaml T, Šnajdr J, Baldrian P (2007) Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Res Microbiol 158:447–455

    Article  CAS  PubMed  Google Scholar 

  • Untereiner WA, Malloch D (1999) Patterns of substrate utilization in species of Capronia and allied black yeasts: ecological and taxonomic implications. Mycologia 91:417–427

    Article  CAS  Google Scholar 

  • Valášková V, Baldrian P (2009) Denaturing gradient gel electrophoresis as a fingerprinting method for the analysis of soil microbial communities. Plant Soil Environ 55:413–423

    Google Scholar 

  • Valášková V, Šnajdr J, Bittner B, Cajthaml T, Merhautová V, Hofrichter M, Baldrian P (2007) Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol Biochem 39:2651–2660

    Article  Google Scholar 

  • Vepsäläinen M, Kukkonen S, Vestberg M, Sirvio H, Niemi RM (2001) Application of soil enzyme activity test kit in a field experiment. Soil Biol Biochem 33:1665–1672

    Article  Google Scholar 

  • Voříšková J, Valášková V, Baldrian P (2009) Fungal community and enzyme activities in topsoil layers of Quercus petraea forest: how important is the seasonality? In: Nováková A (ed) Proceedings of the International Conference Life in the Soil. Institute of Soil Biology CAS, Ceske Budejovice, pp 205–211

    Google Scholar 

  • Vyas P, Deshpande MV (1989) Chitinase production by Myrothecium verrucaria and its significance for fungal mycelia degradation. J Gen Appl Microbiol 35:343–350

    Article  CAS  Google Scholar 

  • Whitaker DR (1951) Purification of the cellulase of Myrothecium verrucaria. Nature 168:1070–1071

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innins MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols. Academic, San Diego, pp 315–322

    Google Scholar 

  • Zheng ZX, Levin RE, Pinkham JL, Shetty K (1999) Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochem 34:31–37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports (OC155, OC08050 and LC06066) and by the Institutional Research Concept of the Institute of Microbiology of the ASCR, v.v.i. (AV0Z50200510). M. Kolařík is gratefully acknowledged for his help with sequence processing and strain identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Baldrian.

Additional information

Responsible Editor: M. Francesca Cotrufo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldrian, P., Voříšková, J., Dobiášová, P. et al. Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338, 111–125 (2011). https://doi.org/10.1007/s11104-010-0324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0324-3

Keywords

Navigation