Skip to main content
Log in

Impact of hemiparasitic Rhinanthus angustifolius and R. minor on nitrogen availability in grasslands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Root hemiparasites like Rhinanthus angustifolius C.C. Gmel and R. minor L. have a potential to accelerate the restoration of semi-natural grasslands because they may decrease above-ground biomass of the vegetation. This, in turn, may be beneficial for species diversity. It is known that hemiparasites often accumulate high nutrient concentrations in their above-ground parts, resulting in high quality litter. Because of the short life cycle of many parasitic plants, litter is released early in the season and the main part is not removed from the grassland by hay-making. This has been shown to yield an increased nutrient availability locally. We performed an introduction experiment with R. angustifolius and R. minor in three semi-natural grasslands in Flanders (Belgium). In the second year after sowing, the above-ground nitrogen (N) content of the grasses and of the potential host vegetation (excluding the hemiparasite), was increased in the parasitized plots. The reduction of grass (and legume) above-ground biomass in parasitized plots resulted in a decrease in the total above-ground N uptake of grasses, host and total vegetation (ex- and including the parasite, respectively) of the parasitized plots compared to the control. Furthermore, with a tracer experiment (15N), we demonstrated that the N from the added tracer was relatively less available in parasitized plots, suggesting larger soil N pools in these treatments. This is probably the consequence of increased mineralization, resulting from the high-quality, parasitic litter. Further experiments should be conducted to investigate the impact of hemiparasitic Rhinanthus spp., e.g. on the availability of other nutrients such as phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ndff:

the fraction of N in the plant derived from the 15N labelled fertilizer

References

  • Ameloot E, Verheyen K, Hermy M (2005) Meta-analysis of standing crop reduction by Rhinanthus spp. and its effect on vegetation structure. Folia Geobot 40:289–310

    Article  Google Scholar 

  • Axmann H, Zapata F (1990) Stable and radioactive isotopes. In: Use of nuclear techniques in studies of soil–plant relationships. International Atomic Energy Agency, Vienna, pp 9–34

  • Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM, Quirk H, Hobbs PJ (2006) Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439:969–972

    Article  PubMed  CAS  Google Scholar 

  • Bullock JM, Pywell RF (2005) Rhinanthus: a tool for restoring diverse grassland? Folia Geobot 40:273–288

    Article  Google Scholar 

  • Cameron DD, Seel WE (2007) Functional anatomy of haustoria formed by Rhinanthus minor: linking evidence from histology and isotope tracing. New Phytol 174:412–419

    Article  PubMed  CAS  Google Scholar 

  • Cameron DD, Hwangbo J-K, Keith AM, Geniez J-M, Kraushaar D, Rowntree J, Seel WE (2005) Interactions between the hemiparasitic angiosperm Rhinanthus minor and its hosts: from the cell to the ecosystem. Folia Geobot 40:205–216

    Article  Google Scholar 

  • Cameron DD, Coats AM, Seel WE (2006) Host and non-host resistance underlie variable success of the hemi-parasitic plant Rhinanthus minor. Ann Bot 98:1289–1299

    Article  PubMed  Google Scholar 

  • Chapman SK, Langley JA, Hart SC, Koch GW (2005) Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34

    Article  Google Scholar 

  • Cortez J, Garnier E, Perez-Harguindeguy N, Debussche M, Gillon D (2007) Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant Soil 296:19–34

    Article  CAS  Google Scholar 

  • Davies DM, Graves JD, Elias CO, Williams PJ (1997) The impact of Rhinanthus spp. on sward productivity and composition: implications for the restoration of species-rich grasslands. Biol Conserv 82:87–93

    Article  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Article  Google Scholar 

  • De Becker P (2004) Graslanden, ruigten en natuurbeheer. In: Hermy M, De Blust G, Slootmaekers M (eds) Natuurbeheer. Davidsfonds i.s.m. Argus vzw, Natuurpunt vzw en het IN, Leuven, pp 191–219

    Google Scholar 

  • de Hullu E (1985) The population dynamics of Rhinanthus angustifolius in a succession series. PhD thesis, University of Groningen

  • De Schrijver A, Nachtergale L, Roskams P, De Keersmaeker L, Mussche S, Lust N (1998) Soil acidification along an ammonium deposition gradient in a Corsican pine stand in northern Belgium. Environ Pollut 102:427–431

    Article  Google Scholar 

  • Gauslaa Y (1990) Water relations and mineral nutrients in Melampyrum pratense (Scrophulariaceae) in oligo- and mesotrophic boreal forests. Acta Oecol 11:525–537

    Google Scholar 

  • Gauslaa Y, Odasz AM (1990) Water relations, temperatures, and mineral nutrients in Pedicularis dasyantha (Scrophulariaceae) from Svalbard, Norway. Holarctic Ecol 13:112–121

    Google Scholar 

  • Gibson CC, Watkinson AR (1989) The host range and selectivity of a parasitic plant: Rhinanthus minor L. Oecologia 78:401–406

    Article  Google Scholar 

  • Gibson CC, Watkinson AR (1991) Host selectivity and the mediation of competition by the root hemiparasite Rhinanthus minor. Oecologia 86:81–87

    Article  Google Scholar 

  • Hibberd JM, Jeschke WD (2001) Solute flux into parasitic plants. J Exp Bot 52:2043–2049

    Article  PubMed  CAS  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  Google Scholar 

  • Jiang F, Jeschke D, Hartung W (2003) Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare. J Exp Bot 54:1985–1993

    Article  PubMed  CAS  Google Scholar 

  • Jiang F, Jeschke WD, Hartung W (2004) Solute flows from Hordeum vulgare to the hemiparasite Rhinanthus minor and the influence of infection on host and parasite nutrient relations. Funct Plant Biol 31:633–643

    Article  CAS  Google Scholar 

  • Jensen LS, Salo T, Palmason F, Breland TA, Henriksen TM, Stenberg B, Pedersen A, Lundstrom C, Esala M (2005) Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant Soil 273:307–326

    Article  CAS  Google Scholar 

  • Joshi J, Matthies D, Schmid B (2000) Root hemiparasites and plant diversity in experimental grassland communities. J Ecol 88:634–644

    Article  Google Scholar 

  • Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology 87:1244–1255

    Article  PubMed  Google Scholar 

  • Klaren CH (1975) Physiological aspects of the hemiparasite Rhinanthus serotinus. PhD thesis, University of Groningen

  • Klaren CH, van de Dijk SJ (1976) Water relations of the hemiparasite Rhinanthus serotinus before and after attachment. Physiol Plant 38:121–125

    Article  Google Scholar 

  • Klaren CH, Janssen G (1978) Physiological changes in the hemiparasite Rhinanthus serotinus before and after attachment. Physiol Plant 42:151–155

    Article  CAS  Google Scholar 

  • Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley

    Google Scholar 

  • Lehtonen P, Helander M, Wink M, Sporer F, Saikkonen K (2005) Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecol Lett 8:1256–1263

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfiinger RD (1996) SAS Ò system for mixed models. SAS Institute, Cary, North Carolina

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  • Overloop S, Bossuyt M, Buysse M, Ducheyne S, Dumortier M, Eppinger R, Genouw G, Stemgée K, Van Gijseghem D, Van Hoof K, Vogels N, Vanden Auweele W, Wustenberghs H, D’hooghe J, Fernagut B (2006) Milieu- en natuurrapport Vlaanderen (MIRA). Achtergronddocument 2006: Vermesting. Vlaamse Milieumaatschappij (VMM). www.milieurapport.be

  • Pate JS (1995) Mineral relationships of parasites and their hosts. In: Press MC, Graves JD (eds) Parasitic plants. Chapman and Hall, London, pp 80–102

    Google Scholar 

  • Phoenix GK, Press MC (2005) Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). J Ecol 93:67–78

    Article  Google Scholar 

  • Portl K, Zechmeister-Boltenstern S, Wanek W, Ambus P, Berger TW (2007) Natural N-15 abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant Soil 295:79–94

    Article  Google Scholar 

  • Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751

    Article  PubMed  Google Scholar 

  • Press MC, Scholes JD, Watling JR (1999) Parasitic plants: physiological and ecological interactions with their hosts. In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell Scientific, Oxford, pp 175–197

    Google Scholar 

  • Pywell RF, Nowakowski M, Walker KJ, Barratt D (1999) A preliminary study of the introduction of Rhinanthus minor into a field margin to control productivity. Asp Appl Biol 54:315–320

    Google Scholar 

  • Pywell RF, Bullock JM, Walker KJ, Coulson SJ, Gregory SJ, Stevenson MJ (2004) Facilitating grassland diversification using the hemiparasitic plant Rhinanthus minor. J Appl Ecol 41:880–887

    Article  Google Scholar 

  • Quested HM, Press MC, Callaghan TV, Cornelissen JHC (2002) The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities. Oecologia 130:88–95

    Google Scholar 

  • Quested HM, Cornelissen HC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwynn-Jones D, Kondratchuk A, Jonasson SE (2003a) Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84:3209–3221

    Article  Google Scholar 

  • Quested HM, Press MC, Callaghan TV (2003b) Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling. Oecologia 135:606–614

    PubMed  Google Scholar 

  • SAS (1999–2001) SAS 8.02. SAS Institute. Cary, North Carolina

  • Seel WE, Press MC (1993) Influence of the host on three sub-Arctic annual facultative root hemiparasites. I. Growth, mineral accumulation and above-ground dry-matter partitioning. New Phytol 125:131–138

    Article  CAS  Google Scholar 

  • Seel WE, Jeschke WD (1999) Simultaneous collection of xylem sap from Rhinanthus minor and the hosts Hordeum and Trifolium: hydraulic properties, xylem sap composition and effects of attachment. New Phytol 143:281–298

    Article  CAS  Google Scholar 

  • Seel WE, Cooper RE, Press MC (1993) Growth, gas exchange and water use efficiency of the facultative hemiparasite Rhinanthus minor associated with hosts differing in foliar nitrogen concentration. Physiol Plant 89:64–70

    Article  CAS  Google Scholar 

  • Seel WE, Geniez J-M, Cameron DD (2004) Light stress in host-parasitic angiosperm associations. Comp Biochem Physiol A 137:168

    Google Scholar 

  • Soil Survey Division Staff (1993) Soil survey manual. United States Department of Agriculture (USDA) Handbook 18. U.S. Government Print Office, Washington

  • ter Borg SJ (1972) Variability of Rhinanthus serotinus (Schönh.) Oborny in relation to the environment. PhD thesis, Rijksuniversiteit Groningen

  • ter Borg SJ (1985) Relaties tussen autotrofe en heterotrofe planten in (half)natuurlijke gemeenschappen. Vakblad voor biologen 65:461–464

    Google Scholar 

  • ter Borg SJ (2005) Dormancy and germination of six Rhinanthus species in relation to climate. Folia Geobot 40:243–260

    Article  Google Scholar 

  • Thomas B, Thompson A (1948) The ash-content of some grasses and herbs on the Palace Leas hay plots at Cockle Park. Emp J Exp Agr 16:221–230

    CAS  Google Scholar 

  • Tolwinska M (1962) The absorption of food, growth and development of Alectorolophus glaber (La. Beck) and the attempt of its control on meadow. Roczniki nauk Rolniczych 75:497–519

    Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, New York, p 568

    Google Scholar 

  • Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    Article  PubMed  CAS  Google Scholar 

  • Weber HC (1987) Untersuchungen an parasitischen Scrophulariaceen (Rhinanthoideen) in Kultur. II. Interaktionen zwischen Parasit und Wirt. Flora 179:35–44

    Google Scholar 

  • West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21:408–414

    Article  PubMed  Google Scholar 

  • Westbury DB, Dunnett NP (2000) The effect of the presence of Rhinanthus minor on the composition and productivity of created swards on ex-arable land. Asp Appl Biol 58:271–278

    Google Scholar 

  • Westbury DB, Dunnett NP (2007) The impact of Rhinanthus minor in newly established meadows on a productive site. Appl Veg Sci 10:121–129

    Article  Google Scholar 

  • Westbury DB, Davies A, Woodcock BA, Dunnett NP (2006) Seeds of change: the value of using Rhinanthus minor in grassland restoration. J Veg Sci 17:435–446

    Article  Google Scholar 

  • Westhoff V, Schaminée JHJ, Grootjans AP (1995) Parvocaricetea. In: Schaminée JHJ, Westhoff V (eds) De vegetatie van Nederland. 2. Plantengemeenschappen van wateren, moerassen en natte heiden. Opulus Press, Leiden, pp 221–262

    Google Scholar 

  • Zapata F (1990) Isotope techniques in soil fertility and plant nutrition studies. In: Use of nuclear techniques in studies of soil–plant relationships. International Atomic Energy Agency, Vienna, pp 61–128

  • Zuidhoff AC, Schaminée JHJ, van’t Veer R (1996) Molinio-Arrhenatheretea. In: Schaminée JHJ, Stortelder AHF, Weeda EJ (eds) De vegetatie van Nederland. 3. Plantengemeenschappen van graslanden, zomen en droge heiden. Opulus, Leiden, pp 163–226

    Google Scholar 

Download references

Acknowledgements

Eric Gillis and Jan Vermeulen (ISOFYS) are gratefully acknowledged for technical assistance and Jan Bries (Soil Service of Belgium) for calculation of the NDC-values. E.A. held a grant from the Fund for Scientific Research (F.W.O.-Vlaanderen). We further acknowledge the financial support by the ministry of the Flemish Community, Department of Environmental and Nature Policy (AMINABEL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Els Ameloot.

Additional information

Responsible Editor: Hans Lambers.

Appendix

Appendix

Table 6 Analysis results for % N and atom% 15N per functional plant group per plot in the non-enriched plots
Table 7 Analysis results for % N and atom% 15N per functional plant group per plot in the 15N-enriched plots

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameloot, E., Verlinden, G., Boeckx, P. et al. Impact of hemiparasitic Rhinanthus angustifolius and R. minor on nitrogen availability in grasslands. Plant Soil 311, 255–268 (2008). https://doi.org/10.1007/s11104-008-9640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9640-2

Keywords

Navigation