Skip to main content
Log in

Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The centromere is an essential chromosomal component assembling the kinetochore for chromosome attachment to the spindle microtubules and for directing the chromosome segregation during nuclear division. Kinetochore assembly requires deposition of the centromeric histone H3 variant (CENH3) into centromeric nucleosomes. CENH3 has a variable N-terminal and a more conserved C-terminal part, including the loop1 region of the histone fold domain, which is considered to be critical for centromere targeting. To investigate the structural requirements for centromere targeting, constructs for EYFP-tagged CENH3 of A. lyrata, A. arenosa, Capsella bursa-pastoris, Zea mays and Luzula nivea (the latter with holocentric chromosomes) were transformed into A. thaliana. Except for LnCENH3, all recombinant CENH3 proteins targeted A. thaliana centromeres, but the more distantly related the heterologous protein is, the lower is the efficiency of targeting. Alignment of CENH3 sequences revealed that the tested species share only three amino acids at loop1 region: threonine2, arginine12 and alanine15. These three amino acids were substituted by asparagine, proline and valine encoding sequences within a recombinant EYFP-AtCENH3 construct via PCR mutagenesis prior to transformation of A. thaliana. After transformation, immunostaining of root tip nuclei with anti-GFP antibodies yielded only diffuse signals, indicating that the original three amino acids are necessary but not sufficient for targeting A. thaliana centromeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117–122

    CAS  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL Jr (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Baker RE, Keith KC, Harris K, Stoler S (2000) The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 20:7037–7048

    Article  CAS  PubMed  Google Scholar 

  • Cooper JL, Henikoff S (2004) Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21:1712–1718

    Article  CAS  PubMed  Google Scholar 

  • Dubin M, Fuchs J, Gräf R, Schubert I, Nellen W (2010) Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis. Nucleic Acids Res. (in press)

  • Earnshaw WC, Rothfield N (1985) Identification of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2002) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  Google Scholar 

  • Hirsch CD, Wu Y, Yan H, Jiang J (2009) Lineage-specific adaptive evolution of the centromeric protein CENH3 in diploid and allotetraploid Oryza species. Mol Biol Evol 26:2877–2885

    Article  CAS  PubMed  Google Scholar 

  • Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100

    Article  CAS  PubMed  Google Scholar 

  • Kawabe A, Nasuda S, Charlesworth D (2006) Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata plant species with multiple centromeric satellite sequences. Genetics 174(4):2021–2032

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Fuchs J, Schubert V, Schubert I (2007) Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma 116:507–510

    Article  PubMed  Google Scholar 

  • Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298

    CAS  PubMed  Google Scholar 

  • Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718

    Article  CAS  PubMed  Google Scholar 

  • Monen J, Maddox PS, Hyndman F, Oegema K, Desai A (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 12:1248–1255

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Terada K, Wakimoto M, Kashihara K, Murata M (2010) Centromere targeting of alien CENH3 s in Arabidopsis and tobacco cells. Chromosom Res 18(2):203–211

    Article  CAS  Google Scholar 

  • Philpott A, Krude T, Laskey RA (2000) Nuclear chaperones. Semin Cell Dev Biol 11:7–14

    Article  CAS  PubMed  Google Scholar 

  • Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22:7553–7561

    Article  CAS  PubMed  Google Scholar 

  • Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P (2004) Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 24:6620–6630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Joachim Bruder and Andrea Kunze for technical assistance, Twan Rutten for assistance with the use of confocal microscope, and Jörg Fuchs for helping with preparation of figures. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to I.S. (SCHU 951/12-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabel C. R. Moraes.

Additional information

Izabel C.R. Moraes and Inna Lermontova contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraes, I.C.R., Lermontova, I. & Schubert, I. Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein. Plant Mol Biol 75, 253–261 (2011). https://doi.org/10.1007/s11103-010-9723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9723-3

Keywords

Navigation