Skip to main content
Log in

A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development

Cytokinin biosynthesis in maize

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cytokinins (CKs) are plant hormones that regulate a large number of processes associated with plant growth and development such as induction of stomata opening, delayed senescence, suppression of auxin-induced apical dominance, signaling of nitrogen availability, differentiation of plastids and control of sink strength. In maize, CKs are thought to play an important role in establishing seed size and increasing seed set under normal and unfavorable environmental conditions therefore influencing yield. In recent years, the discovery of isopentenyl transferase (IPT) genes in plants has shed light on the CK biosynthesis pathway in plants. In an effort to increase our understanding of the role played by CKs in maize development and sink-strength, we identified several putative IPT genes using a bioinformatics approach. We focused our attention on one gene in particular, ZmIPT2, because of its strong expression in developing kernels. The expression of the gene and its product overlays the change in CK levels in developing kernels suggesting a major role in CK biosynthesis for kernel development. We demonstrate that at 8–10 days after pollination (DAP) the endosperm and especially the basal transfer cell layer (BETL) is a major site of ZmIPT2 expression, and that this expression persists in the BETL and the developing embryo into later kernel development stages. We show that ectopic expression of ZmIPT2 in calli and in planta created phenotypes consistent with CK overproduction. We also show that ZmIPT2 preferentially uses ADP and ATP over AMP as the substrates for dimethylallyl diphosphate (DMAPP) IPT activity. The expression pattern of ZmIPT2 in the BETL, endosperm and embryo during kernel development will be discussed with an emphasis on the suggested role of CKs in determining sink-strength and grain production in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BETL:

Basal endosperm transfer layer

cis-Z:

cis-zeatin

IPT:

Isopentenyl transferase

iPAR:

Isopentenyl adenosine

iPMP:

Isopentenyl adenosine mono-phosphate

iPTP:

Isopentenyl adenosine tri-phosphate

PPCBE:

Pedicel/placental chalazal/basal endosperm

t-Z:

trans-zeatin

ZmIPT2:

Zea mays isopentenyl transferase 2

ZR:

Zeatin riboside

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Balibrea Lara ME, Gonzalez Garcia M-C, Fatima T, Ehness R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  PubMed  CAS  Google Scholar 

  • Blackwell JR, Horgan R (1994) Cytokinin biosynthesis by extracts of Zea mays. Phytochemistry 35:339–342

    Article  CAS  Google Scholar 

  • Brenner M, Cheikh N (1995) The role of hormones in photosynthate partitioning and seed filling. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, The Netherlands, pp 649–670

  • Brenner S, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  PubMed  CAS  Google Scholar 

  • Brugière N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11:1995–2012

    Article  PubMed  Google Scholar 

  • Brugière N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132:1228–1240

    Article  PubMed  CAS  Google Scholar 

  • Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress. Plant Physiol 106:45–51

    PubMed  CAS  Google Scholar 

  • Clifford PE, Offler CE, Patrick JW (1986) Growth regulators have rapid effects on photosynthate unloading from seed coats of Phaseolus vulgaris L. Plant Physiol 80:635–637

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dietrich J, Morris R (1995) Changes in cytokinins and cytokinin oxidase activity in developing maize kernels and the effects of exogenous cytokinin on kernal development. Plant Physiol Biochem 33:327–336

    CAS  Google Scholar 

  • Dyer DJ, Cotterman JD, Cotterman CD, Kerr PS, Carlson DR (1988) Cytokinins as metabolic stimulants which induce pod set. In: Pharis RP, Rood SB (eds) Plant growth substances. Springer-Verlag, New York, NY, pp 457–467

    Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Galuszka P, Frebortova J, Luhova L, Bilyeu KD, English JT, Frebort I (2005) Tissue localization of cytokinin dehydrogenase in maize: possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction. Plant Cell Physiol 46:716–728

    Article  PubMed  CAS  Google Scholar 

  • Ghiasi H, Dybing CD, Paech C (1987) Free amino acid content and metabolic activities of setting and aborting soybean ovaries. Plant Physiol 81:1069–1074

    Google Scholar 

  • Hanft JM, Jones RJ (1986) Kernel abortion in Maize: I. Carbohydrate concentration patterns and acid invertase activity of maize kernels induced to abort in vitro. Plant Physiol 81:503–510

    PubMed  CAS  Google Scholar 

  • Houba-Herin N, Pethe C, d’Alayer J, Laloue M (1999) Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J 17:615–626

    Article  PubMed  CAS  Google Scholar 

  • Huff A, Dybing CD (1980) Factors affecting shedding of flowers in soybean (Glycine max (L.) Merrill). J Exp Bot 31:751–762

    Article  CAS  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ, McNeil K, Brenner ML, Foxon G (1992) Cytokinin levels and oxidase activity during maize kernel development. In: Kaminek M, Mok D, Zazimalova E (eds) Physiology and biochemistry of cytokinins in plants. SPB Academic Publishing bv, The Hague, The Netherlands, pp 235–239

    Google Scholar 

  • Kakimoto T (1998) Genes involved in cytokinin signal transduction. J Plant Res 111:261–265

    Article  CAS  Google Scholar 

  • Kakimoto T (2000) CkI1, a histidine kinase homolog inplicated in cytokinin signal transduction. Science 274:1–8

    Google Scholar 

  • Kakimoto T (2001) Identification of plant biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltranferases. Plant Cell Physiol 42:677–685

    Article  PubMed  CAS  Google Scholar 

  • Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004) Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 279:14049–14054

    Article  PubMed  CAS  Google Scholar 

  • Kiesselbach TA (1949) The structure and reproduction of corn. Univ Nebr Agric Exp Stn Res Bull 161:1–96

    Google Scholar 

  • Kowles RV, Phillips RL (1985) DNA amplification patterns in maize endosperm nuclei during kernel development. Proc Natl Acad Sci USA 82:7010–7014

    Article  PubMed  CAS  Google Scholar 

  • Kuiper D (1993) Sink strength: established and regulated by plant growth regulators. Plant Cell Environ 16:1025–1026

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lur H-S, Setter T (1993) Role of auxin in maize endosperm development. Plant Physiol 103:273–280

    PubMed  CAS  Google Scholar 

  • Marivet J, Frendo P, Burkard G (1995) DNA sequence analysis of a cyclophilin gene from maize: developmental expression and regulation by salicylic acid. Mol Gen Genet 247:222–228

    Article  PubMed  CAS  Google Scholar 

  • Massonneau A, Houba-Hérin N, Pethe C, Madzak C, Falque M, Mercy M, Kopecny D, Majira A, Rogowsky P, Laloue M (2004) Maize cytokinin oxidase genes: differential expression and cloning of two new cDNAs. J Exp Bot 55:2549–2557

    Article  PubMed  CAS  Google Scholar 

  • Miller ME, Chourey PS (1992) The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4:297–305

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603

    Article  PubMed  CAS  Google Scholar 

  • Mok MC (1994) Cytokinins and plant development—an overview. In: Mok DWS, Mok MC (eds) Cytokinins—Chemistry, activity and function. CRC Press, Boca Raton, FL, pp 155–166

    Google Scholar 

  • Morris R, Bilyeu K, Laskey JG, Cheikh N (1999) Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255:328–333

    Article  PubMed  CAS  Google Scholar 

  • Mosjidis COH, Peterson CM, Truelove B, Dute RR (1993) Stimulation of pod and ovule growth of soybean, Glycine max (L.) Merr., by 6-benzylaminopurine. Ann Bot 71:193–199

    Article  CAS  Google Scholar 

  • Nagel L, Brewster R, Riedell WE, Reese N (2001) Cytokinin regulation of flower and pod set in Soybeans (Glycine max (L.) Merr.). Ann Bot 88:27–31

    Article  CAS  Google Scholar 

  • Olsen O-A, Nichols S (1999) Developmental biology of the cereal endosperm. Trends Plant Sci 4(7):253–257

    Article  PubMed  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Peterson CM, Williams JC, Kuang A (1990) Increased pod set of determinate cultivars of soybean, Glycine max, with 6-benzylaminopurine. Bot Gaz 151:322–330

    Article  CAS  Google Scholar 

  • Reese RN, Dybing CD, White CA, Page SM, Larson JE (1995) Expression of vegetative storage protein (VSP-{beta}) in soybean raceme tissues8. J Exp Bot 46:957–964

    Article  Google Scholar 

  • Roitsch T, Ehness R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regul 32:359–367

    Article  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Takei K (2002) Identification of cytokinin biosynthesis genes in Arabidopsis: a breakthrough for understanding the metabolic pathway and the regulation in higher plants. J Plant Growth Regul 21:17–23

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M (2006) Ectopic expression of KNOX homeodomain protein induces expression of cytokinin biosynthesis gene in rice. Plant Physiol 142:54–62

    Article  PubMed  CAS  Google Scholar 

  • Sakano Y, Okada Y, Matsunaga A, Suwama T, Kaneko T, Ito K, Noguchi H, Abe I (2004) Molecular cloning, expression, and characterization of adenylate isopentenyl transferase from hop (Humulus lupulus L.). Phytochemistry 65:2439–2446

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Niu Q-W, Tarkowski P, Zheng B, Tarkowska D, Sandberg G, Chua N-H, Zuo J (2003) The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol 131:167–176

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276:26405–26410

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036

    PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 171:1–6

    Google Scholar 

  • Wiebold WJ (1990) Rescue of soybean flowers destined to abscise. Agron J 82:85–88

    Article  Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15:1566

    Article  PubMed  CAS  Google Scholar 

  • Ye C, Wu S, Kong F, Zhou C, Yang Q, Sun Y, Wang B (2006) Identification and characterization of an isopentenyltransferase (IPT) gene in soybean (Glycine max L.). Plant Sci 170:542–550

    Article  CAS  Google Scholar 

  • Zubko E, Adams CJ, Machaekova I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Tom Davis for his help with ZmIPT2 recombinant protein purification and to Nic Bate and Shoba Sivasankar for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Brugière.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1S

ZmIPT Genbank accession numbers and corresponding MAGI and AZM contigs (XLS 22 kb)

Supplemental Fig. 1S

Southern blot using B73 and Mo17 genomic DNA and ZmIPT2 32P-dCTP as a probe. Only one band could be detected after hybridization when HindIII (H), EcoRI (E) or EcoRV (V) restriction enzymes were used suggesting that the gene is present at a single copy per haploid genome (PPT 925 kb)

Supplemental Fig. 2S

Chromosomic location of ZmIPT2 determined by PCR using oat-maize addition lines. ZmIPT2 was only found in the DNA of the oat-maize addition line containing maize chromosome 2 (OMAL 2). Position was further determined as chromosome 2 bin 4 using BAC clones and a proprietary genetic physical map (PPT 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugière, N., Humbert, S., Rizzo, N. et al. A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Plant Mol Biol 67, 215–229 (2008). https://doi.org/10.1007/s11103-008-9312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9312-x

Keywords

Navigation