Skip to main content
Log in

An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The ATP-dependent Clp protease has been well-characterized in Escherichia coli, but knowledge of its function in higher plants is limited. In bacteria, this two-component protease consists of a Ser-type endopeptidase ClpP, which relies on the ATP-dependent unfolding activity from an Hsp100 molecular chaperone to initiate protein degradation. In the chloroplasts of higher plants, multiple isoforms of the proteolytic subunit exist, with Arabidopsis having five ClpPs and four ClpP-like proteins termed ClpR predicted in its genome. In this work we characterized an Arabidopsis mutant impaired in one subunit of the chloroplast-localized Clp protease core, ClpR1. clpR1-1, a virescent mutant, carries a pre-mature stop codon in the clpR1 gene, resulting in no detectable ClpR1 protein. The accumulation of several chloroplast proteins, as well as most of the chloroplast-localized Clp protease subunits, is inhibited in clpR1-1. Unexpectedly, some plastid-encoded proteins do not accumulate, although their transcripts accumulate to wild-type levels. Maturation of 23S and 4.5S chloroplast ribosomal RNA (cp-rRNA) is delayed in clpR1-1, and both RNAs accumulate as higher molecular weight precursors. Also, chloroplasts in clpR1-1 are smaller than in wild type and have fewer thylakoid membranes with smaller grana stacks. We propose that a ClpR1-containing activity is required for chloroplast development and differentiation and in its absence both are delayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

cp-rRNA:

Chloroplast ribosomal RNA

Lhcb2:

Light-harvesting Chl a/b binding protein

RbcL/LSU and RbcS/SSU:

Transcript and protein of large and Small subunits of ribulose bisphosphate carboxylase/oxygenase (Rubisco)

PsaL, PsaD and PsaF:

Subunits XI, II and III of photosystem I (PS I)

Cpn60:

Chaperonin 60

β-ATPase:

CF1 β subunit of ATPase

PsbA and PsbD :

Transcripts encoding for D1 and D2 proteins of photosystem II (PSII)

NF:

Norflurazon

NPQ:

Non-photochemical excitation quenching

References

  • Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, Manuell A, Zheng B, Vallon O, Rodermel SR, Shinozaki K, Clarke AK (2001) Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol 125:1912–1918

    Article  CAS  Google Scholar 

  • Adam Z, Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7:451–456

    Article  CAS  PubMed  Google Scholar 

  • Adam Z, Rudella A, van Wijk KJ (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9:234–240

    Article  CAS  PubMed  Google Scholar 

  • Bellaoui M, Keddie JS, Gruissem W (2003) DCL is a plant-specific protein required for plastid ribosomal RNA processing and embryo development. Plant Mol Biol 53:531–543

    Article  CAS  PubMed  Google Scholar 

  • Bisanz C, Begot L, Carol P, Perez P, Bligny M, Pesey H, Gallois JL, Lerbs-Mache S, Mache R (2003) The Arabidopsis nuclear DAL gene encodes a chloroplast protein which is required for the maturation of the plastid ribosomal RNAs and is essential for chloroplast differentiation. Plant Mol Biol 51:651–663

    Article  CAS  PubMed  Google Scholar 

  • Bollenbach TJ, Lange H, Gutierrez R, Erhardt M, Stern DB, Gagliardi D (2005) RNR1, a 3′-5′ exoribonuclease belonging to the RNR superfamily, catalyzes 3′ maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana. Nucleic Acids Res 33:2751–2763

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Bi YR, Li N (2005) EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J 41:364–375

    CAS  PubMed  Google Scholar 

  • Chen M, Choi Y, Voytas DF, Rodermel S (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22:303–313

    Article  PubMed  Google Scholar 

  • Clarke AK (1999) ATP-dependent Clp proteases in phtosynthetic organisms—A cut above the rest! Ann Bot 83:593–599

    Article  Google Scholar 

  • Constan D, Froehlich JE, Rangarajan S, Keegstra K (2004) A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis. Plant Physiol 136:3605–3615

    Article  CAS  PubMed  Google Scholar 

  • Dougan DA, Reid BG, Horwich AL, Bukau B (2002) ClpS, a substrate modulator of the ClpAP machine. Mol Cell 9:673–683

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506

    Article  CAS  PubMed  Google Scholar 

  • Grimaud R, Kessel M, Beuron F, Steven AC, Maurizi MR (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J Biol Chem 273:12476–12481

    Article  CAS  PubMed  Google Scholar 

  • Halperin T, Ostersetzer O, Adam Z (2001a) ATP-dependent association between subunits of Clp protease in pea chloroplasts. Planta 213:614–619

    Article  CAS  Google Scholar 

  • Halperin T, Zheng B, Itzhaki H, Clarke AK, Adam Z (2001b) Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease. Plant Mol Biol 45:461–468

    Article  CAS  Google Scholar 

  • Jarvis P, Chen LJ, Li H, Peto CA, Fankhauser C, Chory J (1998) An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282:100–103

    Article  CAS  PubMed  Google Scholar 

  • Jarvis P, Robinson C (2004) Mechanisms of protein import and routing in chloroplasts. Curr Biol 14:R1064–1077

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A, Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthesis. Proc Natl Acad Sci USA 99:12789–12794

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, Busconi L, Sherman M, Goldberg AL (1994) Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. J Biol Chem 269:23575–23582

    CAS  PubMed  Google Scholar 

  • Keeler SJ, Boettger CM, Haynes JG, Kuches KA, Johnson MM, Thureen DL, Keeler CL, Jr., Kitto SL (2000) Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiol 123:1121–1132

    Google Scholar 

  • Kishine M, Takabayashi A, Munekage Y, Shikanai T, Endo T, Sato F (2004) Ribosomal RNA processing and an RNase R family member in chloroplasts of Arabidopsis. Plant Mol Biol 55:595–606

    Article  CAS  PubMed  Google Scholar 

  • Kössel H, Edwards K, Koch W, Langridge P, Schiefermayr E, Schwarz Z, Strittmatter G, Zenke G (1982) Structural and functional analysis of an rRNA operon and its flanking tRNA genes from Zea mays chloroplasts. Nucleic Acids Symp Ser:117–120

  • Kuroda H, Maliga P (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425:86–89

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Majeran W, Wollman FA, Vallon O (2000) Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b (6) f complex. Plant Cell 12:137–150

    Article  CAS  PubMed  Google Scholar 

  • Moreira D, Le Guyader H, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    Article  CAS  PubMed  Google Scholar 

  • Muchizuki N, Brusslan JA, Larkin RM, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (gun5) mutant reveals the involvment of Mg-chelatase H subunit in plastid-to nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058

    Article  Google Scholar 

  • Nakabayashi K, Ito M, Kiyosue T, Shinozaki K, Watanabe A (1999) Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol 40:504–514

    CAS  PubMed  Google Scholar 

  • Nielsen E, Akita M, Davila-Aponte J, Keegstra K (1997) Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. Embo J 16:935–946

    Article  CAS  PubMed  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  CAS  PubMed  Google Scholar 

  • Park S, Rodermel SR (2004) Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc Natl Acad Sci USA 101:12765–12770

    Article  CAS  PubMed  Google Scholar 

  • Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y, Ytterberg J, Giacomelli L, Pillardy J, van Wijk KJ (2004) Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem 279:4768–4781

    Article  CAS  PubMed  Google Scholar 

  • Peltier JB, Ytterberg J, Liberles DA, Roepstorff P, van Wijk KJ (2001) Identification of a 350-kDa ClpP protease complex with 10 different Clp isoforms in chloroplasts of Arabidopsis thaliana. J Biol Chem 276:16318–16327

    Article  CAS  PubMed  Google Scholar 

  • Puente P, Wei N, Deng XW (1996) Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in Arabidopsis. EMBO J 15:3732–3743

    CAS  PubMed  Google Scholar 

  • Rodermel S, Haley J, Jiang CZ, Tsai CH, Bogorad L (1996) A mechanism for intergenomic integration: abundance of ribulose bisphosphate carboxylase small-subunit protein influences the translation of the large-subunit mRNA. Proc Natl Acad Sci USA 93:3881–3885

    Article  CAS  PubMed  Google Scholar 

  • Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ (2006) Downregulation of ClpR2 Leads to Reduced Accumulation of the ClpPRS Protease Complex and Defects in Chloroplast Biogenesis in Arabidopsis. Plant Cell 18:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57:599–621

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto W, Tamura T, Hanba-Tomita Y, Murata M (2002) The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 7:769–780

    Article  CAS  PubMed  Google Scholar 

  • Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T (2001) The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273

    Article  CAS  PubMed  Google Scholar 

  • Shunxing J, Hilaire E, Guikema JA (2004) Identification and differential accumulation of two isoforms of the CF1-β subunit under high light stress in Brassica rapa. Plant Physiol Biochem 42:883–890

    Article  CAS  Google Scholar 

  • Sjögren LL, MacDonald TM, Sutinen S, Clarke AK (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol 136:4114–4126

    Article  PubMed  CAS  Google Scholar 

  • Sokolenko A, Lerbs-Mache S, Altschmied L, Herrmann RG (1998) Clp protease complexes and their diversity in chloroplasts. Planta 207:286–295

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K (2004) The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol 45:985–996

    Article  CAS  PubMed  Google Scholar 

  • Takechi K, Sodmergen, Murata M, Motoyoshi F, Sakamoto W (2000) The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. Plant Cell Physiol 41:1334–1346

    Article  CAS  PubMed  Google Scholar 

  • VanderVere PS, Bennett TM, Oblong JE, Lamppa GK (1995) A chloroplast processing enzyme involved in precursor maturation shares a zinc-binding motif with a recently recognized family of metalloendopeptidases. Proc Natl Acad Sci USA 92:7177–7181

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hartling JA, Flanagan JM (1997) The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91:447–456

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, MacDonald TM, Sutinen S, Hurry V, Clarke AK (2006) A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential foe early development in Arabidopsis thaliana. Planta (in press)

Download references

Acknowledgement

This work was supported by the Howard Hughes Medical Institute and a grant from the Department of Energy to J.C., the Swedish Research Council for Environmental, Agricultural Sciences and Spatial Planning (Formas) to A.K.C., and an overseas postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada to T.M.S. S.K. was an EMBO long term fellow (ALTF 118–2000). J.C. is a Howard Hughes Medical Institute Investigator. We thank Takeshi Nakano (Riken Japan) for his help in analyzing chloroplast transcripts, Jason Lim for technical assistance and Olivier Loudet, Chris Schwartz and Jennifer Nemhauser for assisting in the map based cloning of clpR1-1. We thank Paul Sawchenko and the CCMI at Salk Institute for access to microscopy facilities. clpR1-2 seeds and the full length clpR1 cDNA clone were provided by The Arabidopsis Biological Resource Centre (ABRC), Ohio State University (Columbus, Ohio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai Koussevitzky .

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koussevitzky , S., Stanne, T.M., Peto, C.A. et al. An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol Biol 63, 85–96 (2007). https://doi.org/10.1007/s11103-006-9074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9074-2

Keywords:

Navigation