Skip to main content
Log in

Hypopituitarism and bone disease: pathophysiology, diagnosis and treatment outcomes

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Hypopituitarism is a rare but significant endocrine disorder characterized by the inadequate secretion of one or more pituitary hormones. The intricate relationship between hypopituitarism and bone health is a topic of growing interest in the medical community. In this review the authors explore associations between hypopituitarism and bone health, with specific examination of the impact of growth hormone deficiency, central hypogonadism, central hypocortisolism, and central hypothyroidism. Pathogenesis, diagnosis, and treatment options as well as challenges posed by osteopenia, osteoporosis, and fractures in hypopituitarism are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This is a review article data is availbale in the cited literature.

References

  1. Fleseriu M, Christ-Crain M, Langlois F, Gadelha M, Melmed S (2024) Hypopituitarism. Lancet, In press

  2. Fleseriu M, Hashim IA, Karavitaki N et al (2016) Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 101:3888–3921. https://doi.org/10.1210/jc.2016-2118

    Article  CAS  PubMed  Google Scholar 

  3. Regal M, Ramo PÂ, Sierra JÂM, GarcõÂa-Mayor RV (2001) Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin Endocrinol (Oxf) 55:735–740

    Article  CAS  PubMed  Google Scholar 

  4. Wydra A, Czajka-Oraniec I, Wydra J, Zgliczyński W (2023) The influence of growth hormone deficiency on bone health and metabolism. Reumatologia 61:239–247. https://doi.org/10.5114/reum/170244

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mazziotti G, Frara S, Giustina A (2018) Pituitary diseases and bone. Endocr Rev 39:440–488. https://doi.org/10.1210/er.2018-00005

    Article  PubMed  Google Scholar 

  6. Mazziotti G, Porcelli T, Bianchi A et al (2010) Glucocorticoid replacement therapy and vertebral fractures in hypopituitary adult males with GH deficiency. Eur J Endocrinol 163:15–20. https://doi.org/10.1530/EJE-10-0125

    Article  CAS  PubMed  Google Scholar 

  7. Mazziotti G, Mormando M, Cristiano A et al (2014) Association between L-thyroxine treatment, GH deficiency, and radiological vertebral fractures in patients with adult-onset hypopituitarism. Eur J Endocrinol 170:893–899. https://doi.org/10.1530/EJE-14-0097

    Article  CAS  PubMed  Google Scholar 

  8. Chiloiro S, Frara S, Gagliardi I et al (2023) Cholecalciferol use is associated with a decreased risk of incident morphometric vertebral fractures in acromegaly. J Clin Endocrinol Metab 109:e58–e68. https://doi.org/10.1210/clinem/dgad493

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int. https://doi.org/10.1007/s00198-002-1345-4

    Article  PubMed  Google Scholar 

  10. Eastell R, Szulc P (2017) Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol 5:908–923. https://doi.org/10.1016/S2213-8587(17)30184-5

    Article  PubMed  Google Scholar 

  11. Uygur MM, Frara S, di Filippo L, Giustina A (2023) New tools for bone health assessment in secreting pituitary adenomas. Trends Endocrinol Metab 34:231–242. https://doi.org/10.1016/j.tem.2023.01.006

    Article  CAS  PubMed  Google Scholar 

  12. Samelson EJ, Broe KE, Xu H et al (2019) Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the bone microarchitecture international consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 7:34–43. https://doi.org/10.1016/S2213-8587(18)30308-5

    Article  PubMed  Google Scholar 

  13. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29:535–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosén T, Wilhelmsen L, Landin-Wilhelmsen K et al (1997) Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur J Endocrinol 137:240–245

    Article  PubMed  Google Scholar 

  15. Mazziotti G, Lania AG, Canalis E (2022) Skeletal disorders associated with the growth hormone–insulin-like growth factor 1 axis. Nat Rev Endocrinol 18:353–365. https://doi.org/10.1038/s41574-022-00649-8

    Article  CAS  PubMed  Google Scholar 

  16. Canalis E (2009) Growth factor control of bone mass. J Cell Biochem 108:769–777. https://doi.org/10.1002/jcb.22322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohlsson C, Bengtsson B-Å, Isaksson OGP et al (1998) Growth hormone and bone*. Endocr Rev 19:55–79

    CAS  PubMed  Google Scholar 

  18. Yuen KCJ, Koltowska-Haggstrom M, Cook DM et al (2013) Clinical characteristics and effects of GH replacement therapy in adults with childhood-onset craniopharyngioma compared with those in adults with other causes of childhood-onset hypothalamic-pituitary dysfunction. Eur J Endocrinol 169:511–519. https://doi.org/10.1530/EJE-13-0280

    Article  CAS  PubMed  Google Scholar 

  19. Baroncelli GI, Bertelloni S, Sodini F, Saggese G (2004) Longitudinal changes of lumbar bone mineral density (BMD) in patients with GH deficiency after discontinuation of treatment at final height; timing and peak values for lumbar BMD. Clin Endocrinol (Oxf) 60:175–184. https://doi.org/10.1046/j.1365-2265.2003.01949.x

    Article  PubMed  Google Scholar 

  20. Tritos NA, Hamrahian AH, King D et al (2012) A longer interval without GH replacement and female gender are associated with lower bone mineral density in adults with childhood-onset GH deficiency: A KIMS database analysis. Eur J Endocrinol 167:343–351. https://doi.org/10.1530/EJE-12-0070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baer TG, Agarwal S, Chen S et al (2020) Deficits in bone geometry in growth hormone-deficient prepubertal boys revealed by high-resolution peripheral quantitative computed tomography. Horm Res Paediatr 92:293–301. https://doi.org/10.1159/000506229

    Article  CAS  Google Scholar 

  22. Yang H, Yan K, Xu Y et al (2019) Bone microarchitecture and volumetric bone density impairment in young male adults with childhood-onset growth hormone deficiency. Eur J Endocrinol 180:145–153. https://doi.org/10.1530/EJE-18-0711

    Article  PubMed  Google Scholar 

  23. Mazziotti G, Doga M, Frara S et al (2016) Incidence of morphometric vertebral fractures in adult patients with growth hormone deficiency. Endocrine 52:103–110. https://doi.org/10.1007/s12020-015-0738-z

    Article  CAS  PubMed  Google Scholar 

  24. Bex M, Abs R, Maiter D et al (2002) The effects of growth hormone replacement therapy on bone metabolism in adult-onset growth hormone deficiency: A 2-year open randomized controlled multicenter trial. J Bone Miner Res 17:1081–1094. https://doi.org/10.1359/jbmr.2002.17.6.1081

    Article  CAS  PubMed  Google Scholar 

  25. Barake M, Klibanski A, Tritos NA (2014) Effects of recombinant human growth hormone therapy on bone mineral density in adults with growth hormone deficiency: a meta-analysis. J Clin Endocrinol Metab 99:852–860. https://doi.org/10.1210/jc.2013-3921

    Article  CAS  PubMed  Google Scholar 

  26. Appelman-Dijkstra NM, Claessen KMJA, Hamdy NAT et al (2014) Effects of up to 15 years of recombinant human GH (rhGH) replacement on bone metabolism in adults with growth hormone deficiency (GHD): the leiden cohort study. Clin Endocrinol (Oxf) 81:727–735. https://doi.org/10.1111/cen.12493

    Article  CAS  PubMed  Google Scholar 

  27. Conway GS, Szarras-Czapnik M, Racz K et al (2009) Treatment for 24 months with recombinant human GH has a beneficial effect on bone mineral density in young adults with childhood-onset GH deficiency. Eur J Endocrinol 160:899–907. https://doi.org/10.1530/EJE-08-0436

    Article  CAS  PubMed  Google Scholar 

  28. Boot AM, Van Der Sluis IM, Krenning EP, De Muinck K-S (2009) Bone mineral density and body composition in adolescents with childhood-onset growth hormone deficiency. Horm Res 71:364–371. https://doi.org/10.1159/000223422

    Article  CAS  PubMed  Google Scholar 

  29. Mazziotti G, Bianchi A, Bonadonna S et al (2006) Increased prevalence of radiological spinal deformities in adult patients with GH deficiency: Influence of GH replacement therapy. J Bone Miner Res 21:520–528. https://doi.org/10.1359/jbmr.060112

    Article  CAS  PubMed  Google Scholar 

  30. Elbornsson M, Götherström G, Bosæus I et al (2012) Fifteen years of GH replacement increases bone mineral density in hypopituitary patients with adult-onset GH deficiency. Eur J Endocrinol 166:787–795. https://doi.org/10.1530/EJE-11-1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rossini A, Lanzi R, Galeone C et al (2021) Bone and body composition analyses by DXA in adults with GH deficiency: effects of long-term replacement therapy. Endocrine 74:666–675. https://doi.org/10.1007/s12020-021-02835-6

    Article  CAS  PubMed  Google Scholar 

  32. Mo D, Fleseriu M, Qi R et al (2015) Fracture risk in adult patients treated with growth hormone replacement therapy for growth hormone deficiency: a prospective observational cohort study. Lancet Diabetes Endocrinol 3:331–338. https://doi.org/10.1016/S2213-8587(15)00098-4

    Article  CAS  PubMed  Google Scholar 

  33. Shoback D, Rosen CJ, Black DM et al (2020) Pharmacological management of osteoporosis in postmenopausal women: an endocrine society guideline update. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa048

    Article  PubMed  Google Scholar 

  34. Biermasz NR, Hamdy NAT, Pereira AM et al (2004) Long-term skeletal effects of recombinant human growth hormone (rhGH) alone and rhGH combined with alendronate in GH-deficient adults: a seven-year follow-up study. Clin Endocrinol (Oxf) 60:568–575. https://doi.org/10.1111/j.1365-2265.2004.02021.x

    Article  CAS  PubMed  Google Scholar 

  35. Biermasz NR, Hamdy NAT, Janssen YJH, Roelfsema F (2001) Additional beneficial effects of alendronate in growth hormone (GH)-deficient adults with osteoporosis receiving long-term recombinant human GH replacement therapy: a randomized controlled trial. J Clin Endocrinol Metab 86:3079–3085

    Article  CAS  PubMed  Google Scholar 

  36. Meczekalski B, Katulski K, Czyzyk A et al (2014) Functional hypothalamic amenorrhea and its influence on women’s health. Acad Psychiatry 37:1049–1056. https://doi.org/10.1007/s40618-014-0169-3

    Article  CAS  Google Scholar 

  37. Shufelt CL, Torbati T, Dutra E (2017) Hypothalamic amenorrhea and the long-term health consequences. Semin Reprod Med 35:256–262. https://doi.org/10.1055/s-0037-1603581

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ilovayskaya I, Zektser V, Lazebnik L (2020) Factors of mineral homeostasis impairment and bone mineral density loss in women with central hypogonadism. Climacteric 23:597–602. https://doi.org/10.1080/13697137.2020.1767567

    Article  CAS  PubMed  Google Scholar 

  39. Khosla S, Oursler MJ, Monroe DG (2012) Estrogen and the skeleton. Trends Endocrinol Metab 23:576–581. https://doi.org/10.1016/j.tem.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ampatzis C, Zervoudis S, Iatrakis G, Mastorakos G (2022) Effect of oral contraceptives on bone mineral density. Acta Endocrinol (Copenh) 18:355–360. https://doi.org/10.4183/aeb.2022.355

    Article  CAS  Google Scholar 

  41. Tahani N, Nieddu L, Prossomariti G et al (2018) Long-term effect of testosterone replacement therapy on bone in hypogonadal men with Klinefelter syndrome. Endocrine 61:327–335. https://doi.org/10.1007/s12020-018-1604-6

    Article  CAS  PubMed  Google Scholar 

  42. Pedrazzoni M, Casola A, Verzicco I et al (2014) Longitudinal changes of trabecular bone score after estrogen deprivation: effect of menopause and aromatase inhibition. J Endocrinol Invest 37:871–874. https://doi.org/10.1007/s40618-014-0125-2

    Article  CAS  PubMed  Google Scholar 

  43. Snyder PJ, Kopperdahl DL, Stephens-Shields AJ et al (2017) Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone a controlled clinical trial. JAMA Intern Med 177:471–479. https://doi.org/10.1001/jamainternmed.2016.9539

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ostertag A, Papadakis GE, Collet C et al (2021) Compromised volumetric bone density and microarchitecture in men with congenital hypogonadotropic hypogonadism. J Clin Endocrinol Metab 106:E3312–E3326. https://doi.org/10.1210/clinem/dgab169

    Article  PubMed  Google Scholar 

  45. Antonio L, Caerels S, Jardi F et al (2019) Testosterone replacement in congenital hypogonadotropic hypogonadism maintains bone density but has only limited osteoanabolic effects. Andrology 7:302–306. https://doi.org/10.1111/andr.12604

    Article  CAS  PubMed  Google Scholar 

  46. Schubert M, Minnemann T, Hübler D et al (2004) Intramuscular testosterone undecanoate: pharmacokinetic aspects of a novel testosterone formulation during long-term treatment of men with hypogonadism. J Clin Endocrinol Metab 89:5429–5434. https://doi.org/10.1210/jc.2004-0897

    Article  CAS  PubMed  Google Scholar 

  47. Zhou B-na, Hu J, Sun L et al (2022) Effects of bisphosphonates on bone of osteoporotic men with different androgen levels: a case-control study. Endocr Pract 28:250–256. https://doi.org/10.1016/j.eprac.2021.12.013

    Article  PubMed  Google Scholar 

  48. Jankowski CM, Wolfe P, Schmiege SJ et al (2019) Sex-specific effects of dehydroepiandrosterone (DHEA) on bone mineral density and body composition: a pooled analysis of four clinical trials. Clin Endocrinol (Oxf) 90:293–300. https://doi.org/10.1111/cen.13901

    Article  CAS  PubMed  Google Scholar 

  49. Davis SR, Panjari M, Stanczyk FZ (2011) DHEA replacement for postmenopausal women. J Clin Endocrinol Metab 96:1642–1653. https://doi.org/10.1210/jc.2010-2888

    Article  CAS  PubMed  Google Scholar 

  50. Jankowski CM, Gozansky WS, Kittelson JM et al (2008) Increases in bone mineral density in response to oral dehydroepiandrosterone replacement in older adults appear to be mediated by serum estrogens. J Clin Endocrinol Metab 93:4767–4773. https://doi.org/10.1210/jc.2007-2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amereller F, Deutschbein T, Joshi M et al (2022) Differences between immunotherapy-induced and primary hypophysitis—a multicenter retrospective study. Pituitary 25:152–158. https://doi.org/10.1007/s11102-021-01182-z

    Article  CAS  PubMed  Google Scholar 

  52. Løvas K, Gjesdal CG, Christensen M et al (2009) Glucocorticoid replacement therapy and pharmacogenetics in Addison’s disease: Effects on bone. Eur J Endocrinol 160:993–1002. https://doi.org/10.1530/EJE-08-0880

    Article  CAS  PubMed  Google Scholar 

  53. Canalis E, Giustina A (2001) Glucocorticoid-induced osteoporosis: summary of a workshop. J Clin Endocrinol Metab 86:5681–5685

    Article  CAS  PubMed  Google Scholar 

  54. Tritos NA, Greenspan SL, King D et al (2011) Unreplaced sex steroid deficiency, corticotropin deficiency, and lower IGF-I are associated with lower bone mineral density in adults with growth hormone deficiency: a KIMS database analysis. J Clin Endocrinol Metab 96:1516–1523. https://doi.org/10.1210/jc.2010-2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li L, Bensing S, Falhammar H (2021) Rate of fracture in patients with glucocorticoid replacement therapy: a systematic review and meta-analysis. Endocrine 74:29–37. https://doi.org/10.1007/s12020-021-02723-z

    Article  CAS  PubMed  Google Scholar 

  56. Koetz KR, Ventz M, Diederich S, Quinkler M (2012) Bone mineral density is not significantly reduced in adult patients on low-dose glucocorticoid replacement therapy. J Clin Endocrinol Metab 97:85–92. https://doi.org/10.1210/jc.2011-2036

    Article  CAS  PubMed  Google Scholar 

  57. Mazziotti G, Formenti AM, Frara S et al (2017) Risk of overtreatment of patients with adrenal insufficiency: current and emerging aspects. Eur J Endocrinol 177:R231–R248. https://doi.org/10.1530/EJE-17-0154

    Article  CAS  PubMed  Google Scholar 

  58. Vestergaard P, Rejnmark L, Mosekilde L (2008) Fracture risk associated with different types of oral corticosteroids and effect of termination of corticosteroids on the risk of fractures. Calcif Tissue Int 82:249–257. https://doi.org/10.1007/s00223-008-9124-7

    Article  CAS  PubMed  Google Scholar 

  59. Zelissen PM, Croughs RJ, van Rijk PP, Raymakers JA (1994) Effect of glucocorticoid replacement therapy on bone mineral density in patients with Addison disease. Ann Intern Med 120:207–210

    Article  CAS  PubMed  Google Scholar 

  60. Schulz J, Frey KR, Cooper MS et al (2016) Reduction in daily hydrocortisone dose improves bone health in primary adrenal insufficiency. Eur J Endocrinol 174:531–538. https://doi.org/10.1530/EJE-15-1096

    Article  CAS  PubMed  Google Scholar 

  61. Al Nofal A, Bancos I, Benkhadra K et al (2017) Glucocorticoid replacement regimens in chronic adrenal insufficiency: a systematic review and meta-analysis. Endocr Pract 23:17–31. https://doi.org/10.4158/EP161428.OR

    Article  PubMed  Google Scholar 

  62. Mazziotti G, Giustina A (2013) Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol 9:265–276. https://doi.org/10.1038/nrendo.2013.5

    Article  CAS  PubMed  Google Scholar 

  63. Guarnotta V, Ciresi A, Pillitteri G, Giordano C (2018) Improved insulin sensitivity and secretion in prediabetic patients with adrenal insufficiency on dual-release hydrocortisone treatment: a 36-month retrospective analysis. Clin Endocrinol (Oxf) 88:665–672. https://doi.org/10.1111/cen.13554

    Article  CAS  PubMed  Google Scholar 

  64. Guarnotta V, Di Stefano C, Santoro A et al (2019) Dual-release hydrocortisone vs conventional glucocorticoids in adrenal insufficiency. Endocr Connect 8:853–862. https://doi.org/10.1530/EC-19-0176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Quinkler M, Nilsen RM, Zopf K et al (2015) Modified-release hydrocortisone decreases BMI and HbA1c in patients with primary and secondary adrenal insufficiency. Eur J Endocrinol 172:619–626. https://doi.org/10.1530/EJE-14-1114

    Article  CAS  PubMed  Google Scholar 

  66. Frara S, Chiloiro S, Porcelli T et al (2018) Bone safety of dual-release hydrocortisone in patients with hypopituitarism. Endocrine 60:528–531. https://doi.org/10.1007/s12020-017-1512-1

    Article  CAS  PubMed  Google Scholar 

  67. Hasenmajer V, Ferrari D, De Alcubierre D et al (2024) Effects of dual-release hydrocortisone on bone metabolism in primary and secondary adrenal insufficiency: A 6-year study. J Endocr Soc. https://doi.org/10.1210/jendso/bvad151

    Article  Google Scholar 

  68. Duncan Bassett JH, Williams GR (2016) Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev 37:135–187. https://doi.org/10.1210/er.2015-1106

    Article  CAS  Google Scholar 

  69. Tsevis K, Trakakis E, Pergialiotis V et al (2018) The influence of thyroid disorders on bone density and biochemical markers of bone metabolism. Horm Mol Biol Clin Investig. https://doi.org/10.1515/hmbci-2018-0039

    Article  PubMed  Google Scholar 

  70. Abrahamsen B, Jørgensen HL, Laulund AS et al (2015) The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J Bone Miner Res 30:898–905. https://doi.org/10.1002/jbmr.2416

    Article  CAS  PubMed  Google Scholar 

  71. Ko YJ, Kim JY, Lee J et al (2014) Levothyroxine dose and fracture risk according to the osteoporosis status in elderly women. J Prev Med Public Health 47:36–46. https://doi.org/10.3961/jpmph.2014.47.1.36

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nagendra L, Dutta D, Mondal S et al (2024) Hyperprolactinemia due to prolactinoma has an adverse impact on bone health with predominant impact on trabecular bone: a systematic review and meta-analysis. J Clin Densitom 27:101453. https://doi.org/10.1016/j.jocd.2023.101453

    Article  PubMed  Google Scholar 

  73. Mukherjee A, Murray RD, Columb B et al (2003) Acquired prolactin deficiency indicates severe hypopituitarism in patients with disease of the hypothalamic-pituitary axis. Clin Endocrinol (Oxf) 59:743–748. https://doi.org/10.1046/j.1365-2265.2003.01916.x

    Article  PubMed  Google Scholar 

  74. Colucci S, Colaianni G, Mori G et al (2002) Human osteoclasts express oxytocin receptor. Biochem Biophys Res Commun 297:442–445

    Article  CAS  PubMed  Google Scholar 

  75. Breuil V, Trojani MC, Ez-Zoubir A (2021) Oxytocin and bone: review and perspectives. Int J Mol Sci. https://doi.org/10.3390/ijms22168551

    Article  PubMed  PubMed Central  Google Scholar 

  76. Aulinas A, Guarda FJ, Yu EW et al (2020) Lower oxytocin levels are associated with lower bone mineral density and less favorable hip geometry in hypopituitary men. Neuroendocrinology 111:87–98. https://doi.org/10.1159/000506638

    Article  CAS  PubMed  Google Scholar 

  77. Cooper C, Malik KU (1985) Mechanism of action of vasoactive hormones on prostaglandin synthesis in the kidney. Adv Prostaglandin Thromboxane Leukot Res 15:437–440

    CAS  PubMed  Google Scholar 

  78. Tamma R, Sun L, Cuscito C et al (2013) Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc Natl Acad Sci USA 110:18644–18649. https://doi.org/10.1073/pnas.1318257110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Verbalis JG, Barsony J, Sugimura Y et al (2010) Hyponatremia-induced osteoporosis. J Bone Miner Res 25:554–563. https://doi.org/10.1359/jbmr.090827

    Article  CAS  PubMed  Google Scholar 

  80. Hoorn EJ, Rivadeneira F, Van Meurs JBJ et al (2011) Mild hyponatremia as a risk factor for fractures: the rotterdam study. J Bone Miner Res 26:1822–1828. https://doi.org/10.1002/jbmr.380

    Article  CAS  PubMed  Google Scholar 

  81. Pivonello R, Colao A, Di Somma C et al (1998) Impairment of bone status in patients with central diabetes insipidus*. J Clin Endocrinol Metab 83:2275–2280

    CAS  PubMed  Google Scholar 

  82. Ulivieri FM, Rinaudo L, Messina C et al (2021) Bone strain index predicts fragility fracture in osteoporotic women: an artificial intelligence-based study. Eur Radiol Exp. https://doi.org/10.1186/s41747-021-00242-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

AA and MF designed the study, performed a literature review, drafted the first version of the manuscript, conducted extensive content and language editing. All authors contributed to writing and critically reviewing the manuscript. All authors had final responsibility for the decision to submit for publication.

Corresponding author

Correspondence to Maria Fleseriu.

Ethics declarations

Competing interests

MF is on the editorial board of Pituitary. MF has received research support to Oregon Health & Science University as principal investigator from Ascendis and has received occasional scientific consulting fees from Novo Nordisk. Other authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akirov, A., Rudman, Y. & Fleseriu, M. Hypopituitarism and bone disease: pathophysiology, diagnosis and treatment outcomes. Pituitary (2024). https://doi.org/10.1007/s11102-024-01391-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11102-024-01391-2

Keywords

Navigation