Skip to main content
Log in

IGF-1 is positively associated with BMI in patients with acromegaly

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Acromegaly is a disorder characterized by IGF-1 excess due to autonomous GH secretion. In individuals without acromegaly, IGF-1 is not only influenced by GH secretion but is also sensitive to other factors including nutritional status, as evidenced by the inverted U-shaped association between BMI and IGF-1; in low-weight individuals (BMI < 18.5 kg/m2) and those who are obese, IGF-1 levels may be frankly low. It is not known if this same relationship between BMI and IGF-1 is also observed in acromegaly.

Methods

Retrospective study including patients who underwent resection of a pituitary adenoma (n = 197) for either acromegaly (n = 32) or a nonfunctioning adenoma (NFPA, n = 165) at a large academic medical center between 1/1/2015 and 5/31/2021.

Results

Median BMI in acromegaly was 30.8 kg/m2 (range 20.9–42.6 kg/m2). Percent upper limit of normal (%ULN) IGF-1 was 228.2% [159.0, 271.4] in acromegaly versus 32.2% [18.5, 50] in NFPA (p < 0.0001). There was a significant positive association between BMI and %ULN IGF-1 (R = 0.35, p < 0.05) in acromegaly. In contrast, there was no association between BMI and %ULN IGF-1 in the NFPA group as a whole (p = 0.22), but a significant inverse association between BMI and %ULN IGF-1 in NFPA patients with a BMI ≥ 35 kg/m2 (rho =  − 0.39, p = 0.02).

Conclusion

In contrast to individuals without acromegaly, BMI is significantly and positively associated with IGF-1 in acromegaly across the weight spectrum. Future studies are needed to determine if obese patients with acromegaly experience more significant symptoms related to their disease, or if patients with a low BMI may require different diagnostic criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Deidentified data will be made available upon reasonable request and with the permission of the University of Pittsburgh institutional review board.

References

  1. Fazeli PK, Klibanski A (2014) Determinants of GH resistance in malnutrition. J Endocrinol 220(3):R57-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kopchick JJ, Berryman DE, Puri V, Lee KY, Jorgensen JOL (2020) The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat Rev Endocrinol 16(3):135–146

    Article  PubMed  Google Scholar 

  3. LeRoith D, Yakar S (2007) Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab 3(3):302–310

    Article  CAS  PubMed  Google Scholar 

  4. Schneider HJ, Saller B, Klotsche J, März W, Erwa W, Wittchen HU, Stalla GK (2006) Opposite associations of age-dependent insulin-like growth factor-I standard deviation scores with nutritional state in normal weight and obese subjects. Eur J Endocrinol 154(5):699–706

    Article  CAS  PubMed  Google Scholar 

  5. Gram IT, Norat T, Rinaldi S, Dossus L, Lukanova A, Téhard B, Clavel-Chapelon F, van Gils CH, van Noord PA, Peeters PH, Bueno-de-Mesquita HB, Nagel G, Linseisen J, Lahmann PH, Boeing H, Palli D, Sacerdote C, Panico S, Tumino R, Sieri S, Dorronsoro M, Quirós JR, Navarro CA, Barricarte A, Tormo MJ, González CA, Overvad K, Paaske Johnsen S, Olsen A, Tjønneland A, Travis R, Allen N, Bingham S, Khaw KT, Stattin P, Trichopoulou A, Kalapothaki V, Psaltopoulou T, Casagrande C, Riboli E, Kaaks R (2006) Body mass index, waist circumference and waist-hip ratio and serum levels of IGF-I and IGFBP-3 in European women. Int J Obes (Lond) 30(11):1623–1631

    Article  CAS  PubMed  Google Scholar 

  6. Williams T, Berelowitz M, Joffe SN, Thorner MO, Rivier J, Vale W, Frohman LA (1984) Impaired growth hormone responses to growth hormone-releasing factor in obesity. A pituitary defect reversed with weight reduction. N Engl J Med 311(22):1403–1407

    Article  CAS  PubMed  Google Scholar 

  7. Bengtsson BA, Brummer RJ, Edén S, Bosaeus I (1989) Body composition in acromegaly. Clin Endocrinol (Oxf) 30(2):121–130

    Article  CAS  PubMed  Google Scholar 

  8. Ezzat S, Forster MJ, Berchtold P, Redelmeier DA, Boerlin V, Harris AG (1994) Acromegaly. Clinical and biochemical features in 500 patients. Medicine (Baltimore) 73(5):233–240

    Article  CAS  PubMed  Google Scholar 

  9. O’Sullivan AJ, Kelly JJ, Hoffman DM, Freund J, Ho KK (1994) Body composition and energy expenditure in acromegaly. J Clin Endocrinol Metab 78(2):381–386

    CAS  PubMed  Google Scholar 

  10. Bengtsson BA, Brummer RJ, Edén S, Bosaeus I, Lindstedt G (1989) Body composition in acromegaly: the effect of treatment. Clin Endocrinol (Oxf) 31(4):481–490

    Article  CAS  PubMed  Google Scholar 

  11. Sucunza N, Barahona MJ, Resmini E, Fernández-Real JM, Farrerons J, Lluch P, Puig T, Wägner AM, Ricart W, Webb SM (2008) Gender dimorphism in body composition abnormalities in acromegaly: males are more affected than females. Eur J Endocrinol 159(6):773–779

    Article  CAS  PubMed  Google Scholar 

  12. Freda PU, Shen W, Heymsfield SB, Reyes-Vidal CM, Geer EB, Bruce JN, Gallagher D (2008) Lower visceral and subcutaneous but higher intermuscular adipose tissue depots in patients with growth hormone and insulin-like growth factor I excess due to acromegaly. J Clin Endocrinol Metab 93(6):2334–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freda PU, Shen W, Reyes-Vidal CM, Geer EB, Arias-Mendoza F, Gallagher D, Heymsfield SB (2009) Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon x-ray absorptiometry. J Clin Endocrinol Metab 94(8):2880–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reyes-Vidal C, Fernandez JC, Bruce JN, Crisman C, Conwell IM, Kostadinov J, Geer EB, Post KD, Freda PU (2014) Prospective study of surgical treatment of acromegaly: effects on ghrelin, weight, adiposity, and markers of CV risk. J Clin Endocrinol Metab 99(11):4124–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olarescu NC, Heck A, Godang K, Ueland T, Bollerslev J (2016) The metabolic risk in patients newly diagnosed with acromegaly is related to fat distribution and circulating adipokines and improves after treatment. Neuroendocrinology 103(3–4):197–206

    Article  CAS  PubMed  Google Scholar 

  16. Bredella MA, Schorr M, Dichtel LE, Gerweck AV, Young BJ, Woodmansee WW, Swearingen B, Miller KK (2017) Body composition and ectopic lipid changes with biochemical control of acromegaly. J Clin Endocrinol Metab 102(11):4218–4225

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guo X, Gao L, Shi X, Li H, Wang Q, Wang Z, Chen W, Xing B (2018) Pre- and postoperative body composition and metabolic characteristics in patients with acromegaly: a prospective study. Int J Endocrinol 2018:4125013

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wolf P, Salenave S, Durand E, Young J, Kamenicky P, Chanson P, Maione L (2021) Treatment of acromegaly has substantial effects on body composition: a long-term follow-up study. Eur J Endocrinol 186(2):173–181

    Article  PubMed  Google Scholar 

  19. Lopes AA, Albuquerque L, Fontes M, Rego D, Bandeira F (2022) Body composition in acromegaly according to disease activity - performance of dual X-ray absorptiometry and multifrequency bioelectrical impedance analysis. Front Endocrinol (Lausanne) 13:866099

    Article  PubMed  Google Scholar 

  20. Reid TJ, Jin Z, Shen W, Reyes-Vidal CM, Fernandez JC, Bruce JN, Kostadinov J, Post KD, Freda PU (2015) IGF-1 levels across the spectrum of normal to elevated in acromegaly: relationship to insulin sensitivity, markers of cardiovascular risk and body composition. Pituitary 18(6):808–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katznelson L, Laws ER, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA, Society E (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951

    Article  CAS  PubMed  Google Scholar 

  22. Rasmussen MH, Hvidberg A, Juul A, Main KM, Gotfredsen A, Skakkebaek NE, Hilsted J, Skakkebae NE (1995) Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects. J Clin Endocrinol Metab 80(4):1407–1415

    CAS  PubMed  Google Scholar 

  23. Pijl H, Langendonk JG, Burggraaf J, Frölich M, Cohen AF, Veldhuis JD, Meinders AE (2001) Altered neuroregulation of GH secretion in viscerally obese premenopausal women. J Clin Endocrinol Metab 86(11):5509–5515

    Article  CAS  PubMed  Google Scholar 

  24. Tzanela M, Zianni D, Bilariki K, Vezalis A, Gavalas N, Szabo A, Drimala P, Vassiliadi D, Vassilopoulos C (2010) The effect of body mass index on the diagnosis of GH deficiency in patients at risk due to a pituitary insult. Eur J Endocrinol 162(1):29–35

    Article  CAS  PubMed  Google Scholar 

  25. Dichtel LE, Yuen KC, Bredella MA, Gerweck AV, Russell BM, Riccio AD, Gurel MH, Sluss PM, Biller BM, Miller KK (2014) Overweight/Obese adults with pituitary disorders require lower peak growth hormone cutoff values on glucagon stimulation testing to avoid overdiagnosis of growth hormone deficiency. J Clin Endocrinol Metab 99(12):4712–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuen KC, Tritos NA, Samson SL, Hoffman AR, Katznelson L (2016) American Association of Clinical Endocrinologists and American College of Endocrinology disease state clinical review: update on growth hormone stimulation testing and proposed revised cut-point for the glucagon stimulation test in the diagnosis of adult growth hormone deficiency. Endocr Pract 22(10):1235–1244

    Article  PubMed  Google Scholar 

  27. Gasco V, Ferrero A, Bisceglia A, Prencipe N, Cambria V, Bioletto F, Ghigo E, Maccario M, Grottoli S (2021) The cut-off limits of growth hormone response to the insulin tolerance test related to body mass index for the diagnosis of adult growth hormone deficiency. Neuroendocrinology 111(5):442–450

    Article  CAS  PubMed  Google Scholar 

  28. Dixit M, Poudel SB, Yakar S (2021) Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 519:111052

    Article  CAS  PubMed  Google Scholar 

  29. Fazeli PK, Lawson EA, Prabhakaran R, Miller KK, Donoho DA, Clemmons DR, Herzog DB, Misra M, Klibanski A (2010) Effects of recombinant human growth hormone in anorexia nervosa: a randomized, placebo-controlled study. J Clin Endocrinol Metab 95(11):4889–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Katznelson L (2009) Alterations in body composition in acromegaly. Pituitary 12(2):136–142

    Article  CAS  PubMed  Google Scholar 

  31. Freda PU (2022) The acromegaly lipodystrophy. Front Endocrinol (Lausanne) 13:933039

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Study design: AK and PKF. Data collection/analysis: AK, NM, SV, PKF. First draft of the manuscript was written by AK. All authors critically revised and approved the final manuscript.

Corresponding author

Correspondence to Pouneh K. Fazeli.

Ethics declarations

Competing interests

There are no competing interests related to the topic of this manuscript. PKF is a consultant for Regeneron and Xeris Pharmaceuticals.

Ethical approval

This study was approved by the University of Pittsburgh institutional review board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khiyami, A., Mehrotra, N., Venugopal, S. et al. IGF-1 is positively associated with BMI in patients with acromegaly. Pituitary 26, 221–226 (2023). https://doi.org/10.1007/s11102-023-01307-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-023-01307-6

Keywords

Navigation