Skip to main content

Advertisement

Log in

A procedure in mice to obtain intact pituitary-infundibulum-hypothalamus preparations: a method to evaluate the reconstruction of hypothalamohypophyseal system

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

The histopathological study of brain tissue is a common method in neuroscience. However, efficient procedures to preserve the intact hypothalamic-pituitary brain specimens are not available in mice for histopathological study.

Method

We describe a detailed procedure for obtaining mouse brain with pituitary-hypothalamus continuity. Unlike the traditional methods, we collect the brain via a ventral approach. We cut the intraoccipital synchondrosis, transection the endocranium of pituitary, broke the spheno-occipital synchondrosis, expose the posterior edge of pituitary, separate the trigeminal nerve, then the intact pituitary gland was preserved.

Result

We report an more effective and practical method to obtain continuous hypothalamus -pituitary preparations based on the preserve of leptomeninges.

Compared with the existing methods

Our procedure effectively protects the integrity of the fragile infundibulum preventing the pituitary from separating from the hypothalamus. This procedure is more convenient and efficient.

Conclusion

We present a convenient and practical procedure to obtain intact hypothalamic-pituitary brain specimens for subsequent histopathological evaluation in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All of the material is owned by the authors and/or no permissions are required.

References

  1. Barez-Lopez S, Scanlon L, Murphy D, Greenwood MP (2021) Imaging the hypothalamo-neurohypophysial system. Neuroendocrinology. https://doi.org/10.1159/000519233

    Article  PubMed  Google Scholar 

  2. Jurek B, Neumann ID (2018) The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev 98(3):1805–1908. https://doi.org/10.1152/physrev.00031.2017

    Article  CAS  PubMed  Google Scholar 

  3. Lawson EA (2017) The effects of oxytocin on eating behaviour and metabolism in humans. Nat Rev Endocrinol 13(12):700–709. https://doi.org/10.1038/nrendo.2017.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen Q, Leshkowitz D, Blechman J, Levkowitz G (2020) Single-cell molecular and cellular architecture of the mouse neurohypophysis. eNeuro. https://doi.org/10.1523/ENEURO.0345-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goodman T, Hajihosseini MK (2015) Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci 9:387. https://doi.org/10.3389/fnins.2015.00387

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rotondo F, Butz H, Syro LV, Yousef GM, Di Ieva A, Restrepo LM, Quintanar-Stephano A, Berczi I, Kovacs K (2016) Arginine vasopressin (AVP): a review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary 19(4):345–355. https://doi.org/10.1007/s11102-015-0703-0

    Article  CAS  PubMed  Google Scholar 

  7. Son S, Manjila SB, Newmaster KT, Wu YT, Vanselow DJ, Ciarletta M, Anthony TE, Cheng KC, Kim Y (2022) Whole-brain wiring diagram of oxytocin system in adult mice. J Neurosci 42(25):5021–5033. https://doi.org/10.1523/JNEUROSCI.0307-22.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jacobi A, Tran NM, Yan W, Benhar I, Tian F, Schaffer R, He Z, Sanes JR (2022) Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron 110(16):2625–2645. https://doi.org/10.1016/j.neuron.2022.06.002

    Article  CAS  PubMed  Google Scholar 

  9. Varadarajan SG, Hunyara JL, Hamilton NR, Kolodkin AL, Huberman AD (2022) Central nervous system regeneration. Cell 185(1):77–94. https://doi.org/10.1016/j.cell.2021.10.029

    Article  CAS  PubMed  Google Scholar 

  10. Anderson MA, O’Shea TM, Burda JE, Ao Y, Barlatey SL, Bernstein AM, Kim JH, James ND, Rogers A, Kato B, Wollenberg AL, Kawaguchi R, Coppola G, Wang C, Deming TJ, He Z, Courtine G, Sofroniew MV (2018) Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561(7723):396–400. https://doi.org/10.1038/s41586-018-0467-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Williams PR, Jacobi A, Wang C, Goel A, Hirano AA, Brecha NC, Kerschensteiner D, He Z (2019) Elevating growth factor responsiveness and axon regeneration by modulating presynaptic inputs. Neuron 103(1):39–51. https://doi.org/10.1016/j.neuron.2019.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chauvet N, Parmentier ML, Alonso G (1995) Transected axons of adult hypothalamo-neurohypophysial neurons regenerate along tanycytic processes. J Neurosci Res 41(1):129–144. https://doi.org/10.1002/jnr.490410115

    Article  CAS  PubMed  Google Scholar 

  13. Muller HL, Merchant TE, Warmuth-Metz M, Martinez-Barbera JP, Puget S (2019) Craniopharyngioma. Nat Rev Dis Primers 5(1):75. https://doi.org/10.1038/s41572-019-0125-9

    Article  PubMed  Google Scholar 

  14. Funato N (2020) New insights into cranial synchondrosis development: a mini review. Front Cell Dev Biol 8:706. https://doi.org/10.3389/fcell.2020.00706

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ou Y, Zhou M, Wu G, Gong H, Li K, Wang X, Peng J, Niu P, Liu Y, Qi S, Feng Z (2020) A retaining sphenoid and dura procedure in the rat to obtain intact pituitary-infundibulum-hypothalamus preparations. J Neurosci Methods 338:108694. https://doi.org/10.1016/j.jneumeth.2020.108694

    Article  PubMed  Google Scholar 

  16. Qi S, Liu Y, Wang C, Fan J, Pan J, Zhang X, Lu Y (2020) Membrane structures between craniopharyngioma and the third ventricle floor based on the QST classification and its significance: a pathological study. J Neuropathol Exp Neurol 79(9):966–974. https://doi.org/10.1093/jnen/nlaa087

    Article  CAS  PubMed  Google Scholar 

  17. Song-tao Q, Xi-an Z, Hao L, Jun F, Jun P, Yun-tao L (2010) The arachnoid sleeve enveloping the pituitary stalk: anatomical and histologic study. Neurosurgery 66(3):585–589. https://doi.org/10.1227/01.NEU.0000365371.50165.06

    Article  PubMed  Google Scholar 

  18. Anbalagan S, Gordon L, Blechman J, Matsuoka RL, Rajamannar P, Wircer E, Biran J, Reuveny A, Leshkowitz D, Stainier D, Levkowitz G (2018) Pituicyte cues regulate the development of permeable neuro-vascular interfaces. Dev Cell 47(6):711–726. https://doi.org/10.1016/j.devcel.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  19. Gutnick A, Blechman J, Kaslin J, Herwig L, Belting HG, Affolter M, Bonkowsky JL, Levkowitz G (2011) The hypothalamic neuropeptide oxytocin is required for formation of the neurovascular interface of the pituitary. Dev Cell 21(4):642–654. https://doi.org/10.1016/j.devcel.2011.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang B, Qiu L, Xiao W, Ni H, Chen L, Wang F, Mai W, Wu J, Bao A, Hu H, Gong H, Duan S, Li A, Gao Z (2021) Reconstruction of the hypothalamo-neurohypophysial system and functional dissection of magnocellular oxytocin neurons in the brain. Neuron 109(2):331–346. https://doi.org/10.1016/j.neuron.2020.10.032

    Article  CAS  PubMed  Google Scholar 

  21. Fletcher PA, Smiljanic K, Prévide RM, Constantin S, Sherman AS, Coon SL, Stojilkovic SS (2023) The astroglial and stem cell functions of adult rat folliculostellate cells. Glia 71(2):205–228. https://doi.org/10.1002/glia.24267

    Article  CAS  PubMed  Google Scholar 

  22. Ou Y, Zhou M, Che M, Gong H, Wu G, Peng J, Li K, Yang R, Wang X, Zhang X, Liu Y, Feng Z, Qi S (2022) Adult neurogenesis of the median eminence contributes to structural reconstruction and recovery of body fluid metabolism in hypothalamic self-repair after pituitary stalk lesion. Cell Mol Life Sci 79(8):458. https://doi.org/10.1007/s00018-022-04457-1

    Article  CAS  PubMed  Google Scholar 

  23. Zhou MF, Feng ZP, Ou YC, Peng JJ, Li K, Gong HD, Qiu BH, Liu YW, Wang YJ, Qi ST (2019) Endoplasmic reticulum stress induces apoptosis of arginine vasopressin neurons in central diabetes insipidus via PI3K/Akt pathway. CNS Neurosci Ther 25(5):562–574. https://doi.org/10.1111/cns.13089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tai W, Wu W, Wang LL, Ni H, Chen C, Yang J, Zang T, Zou Y, Xu XM, Zhang CL (2021) In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell 28(5):923–937. https://doi.org/10.1016/j.stem.2021.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng Z, Ou Y, Zhou M, Wu G, Ma L, Zhang Y, Liu Y, Qi S (2018) Functional ectopic neural lobe increases GAP-43 expression via PI3K/AKT pathways to alleviate central diabetes insipidus after pituitary stalk lesion in rats. Neurosci Lett 673:1–6. https://doi.org/10.1016/j.neulet.2018.02.038

    Article  CAS  PubMed  Google Scholar 

  26. Adams KL, Gallo V (2018) The diversity and disparity of the glial scar. Nat Neurosci 21(1):9–15. https://doi.org/10.1038/s41593-017-0033-9

    Article  CAS  PubMed  Google Scholar 

  27. Dorrier CE, Aran D, Haenelt EA, Sheehy RN, Hoi KK, Pintaric L, Chen Y, Lizama CO, Cautivo KM, Weiner GA, Popko B, Fancy S, Arnold TD, Daneman R (2021) CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci 24(2):234–244. https://doi.org/10.1038/s41593-020-00770-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the careful reading and thoughtful comments of the reviewers, whose efforts greatly improved the quality of this manuscript.

Funding

This work was supported by the GuangDong Basic and Applied Basic Research Foundation(No. 2021A1515011371; No. 2021A1515110290; No. 2020A1515110564; No. 2023A1515010150), Science and Technology Planning Project of Guangzhou (No. 202102020977), the National Natural Science Foundation of China (No. 82201516; No. 81900709), President Foundation of Nanfang Hospital, Southern Medical University (2019C001, 2019C016, 2021C045).

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author has read the Springer journal policies on author responsibilities and submits this manuscript in accordance with those policies. LK: Formal analysis, Methodology, Writing—original draft, Writing—review & editing. ZX: Funding acquisition. MZ: Investigation. YO: Investigation. WL: Investigation. GW: Investigation. MC: Investigation. HG: Data curation. XW: Funding acquisition. JP: Formal analysis. JL: Formal analysis. XZ: Formal analysis. ZF: Funding acquisition, Methodology, Validation. JP: Conceptualization, Funding acquisition, Resources, Supervision, Validation.

Corresponding authors

Correspondence to Zhanpeng Feng or Junxiang Peng.

Ethics declarations

Conflict of interest

I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval

All procedures were in accordance with our institutional guidelines and approved by the Ethics Committee of Nanfang Hospital, Southern Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Xiong, Z., Zhou, M. et al. A procedure in mice to obtain intact pituitary-infundibulum-hypothalamus preparations: a method to evaluate the reconstruction of hypothalamohypophyseal system. Pituitary 26, 197–208 (2023). https://doi.org/10.1007/s11102-023-01299-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-023-01299-3

Keywords

Navigation