Skip to main content

Advertisement

Log in

Glucosinolates, isothiocyanates, and their role in the regulation of autophagy and cellular function

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Autophagy is a cellular degradation process important for the maintenance of cytoplasmic integrity which can be upregulated in response to stress which is active in eukaryotic cells. Promotion of autophagy has been related to lifespan expansion, tumor suppression and the maintenance of metabolic health. Also, alterations in this pathway have been related to human diseases or pathological states including neurodegenerative diseases, stroke, metabolic alterations, or cancer. Extensive research on the effects of natural products on autophagy has been made, with a particular focus on phenolic compounds. However, plant nitrogen-containing specialized metabolites have recently acquired great importance due to their potential therapeutic uses. Among these, glucosinolates (GSL), a group of thioglucosides and their bioactive metabolites, isothiocyanates (ITC) and indoles, are known to modulate cellular processes important for disease treatment and prevention. These compounds are almost exclusive of cruciferous foods (Brassicas), including broccoli, cabbages, radishes, kale, mustards, rocket salad or arugula, wasabi, and so on. The cruciferous vegetables are widely distributed worldwide and highly consumed in Europe, Asia and the Americas. Due to the important role of autophagy as a cellular homeostatic maintenance process, and its alterations in pathological states, we reviewed the recent evidence relating the effects of GSL metabolites and their role as modulators of autophagy. The potential to modulate this process is crucial for the maintenance of human health and to treat highly prevalent diseases where autophagy is involved, such as neurodegenerative, metabolic disorders, or cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Massih RM, Debs E, Othman L, Attieh J, Cabrerizo FM (2023) Glucosinolates, a natural chemical arsenal: more to tell than the myrosinase story. Front Microbiol 14:1130208. https://doi.org/10.3389/fmicb.2023.1130208

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdull Razis AF, Konsue N, Ioannides C (2018) Isothiocyanates and xenobiotic detoxification. Mol Nutr Food Res 62(18):e1700916. https://doi.org/10.1002/mnfr.201700916

    Article  CAS  PubMed  Google Scholar 

  • Abellán Á, Domínguez-Perles R, García-Viguera C, Moreno DA (2021) Evidence on the bioaccessibility of glucosinolates and breakdown products of cruciferous sprouts by simulated in vitro gastrointestinal digestion. Int J Mol Sci. https://doi.org/10.3390/ijms222011046

    Article  PubMed  PubMed Central  Google Scholar 

  • Adam-Rodwell G, Morse MA, Stoner GD (1993) The effects of phenethyl isothiocyanate on benzo[a]pyrene-induced tumors and DNA adducts in A/J mouse lung. Cancer Lett 71(1–3):35–42. https://doi.org/10.1016/0304-3835(93)90094-p

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal M, Saxena R, Sinclair E, Fu Y, Jacobs A, Dyba M, Wang X, Cruz I, Berry D, Kallakury B, Mueller SC, Agostino SD, Blandino G, Avantaggiati ML, Chung FL (2016) Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth. Cell Death Differ 23(10):1615–1627. https://doi.org/10.1038/cdd.2016.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altshuler-Keylin S, Kajimura S (2017) Mitochondrial homeostasis in adipose tissue remodeling. Sci Signal. https://doi.org/10.1126/scisignal.aai9248

    Article  PubMed  PubMed Central  Google Scholar 

  • Amare DE (2020) Anti-cancer and other biological effects of a dietary compound 3,3′-diindolylmethane supplementation: a systematic review of human clinical trials. Nutr Diet Suppl 12:123–137. https://doi.org/10.2147/NDS.S261577

    Article  CAS  Google Scholar 

  • Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Tapia E, Sánchez-Lozada LG, García-Arroyo FE, Amador-Martínez I, Orozco-Ibarra M, Fernández-Valverde F, Pedraza-Chaverri J (2022) Sulforaphane protects against unilateral ureteral obstruction-induced renal damage in rats by alleviating mitochondrial and lipid metabolism impairment. Antioxidants 11(10):1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aras U, Gandhi YA, Masso-Welch PA, Morris ME (2013) Chemopreventive and anti-angiogenic effects of dietary phenethyl isothiocyanate in an N-methyl nitrosourea-induced breast cancer animal model. Biopharm Drug Dispos 34(2):98–106. https://doi.org/10.1002/bdd.1826

    Article  CAS  PubMed  Google Scholar 

  • Arumugam A, Ibrahim MD, Kntayya SB, Mohd Ain N, Iori R, Galletti S, Ioannides C, Abdull Razis AF (2020) Induction of apoptosis by gluconasturtiin-isothiocyanate (GNST-ITC) in human hepatocarcinoma HepG2 cells and human breast adenocarcinoma MCF-7 cells. Molecules. https://doi.org/10.3390/molecules25051240

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashmawy AI, El-Abhar HS, Abdallah DM, Ali MA (2022) Chloroquine modulates the sulforaphane anti-obesity mechanisms in a high-fat diet model: Role of JAK-2/ STAT-3/ SOCS-3 pathway. Eur J Pharmacol 927:175066. https://doi.org/10.1016/j.ejphar.2022.175066

    Article  CAS  PubMed  Google Scholar 

  • Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, Tang Y, Fahey JW, Derry JMJ, Wollheim CB, Wierup N, Haymond MW, Friend SH, Mulder H, Rosengren AH (2017) Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aah4477

    Article  PubMed  Google Scholar 

  • Baenas N, Vega-García A, Manjarrez-Marmolejo J, Moreno DA, Feria-Romero IA (2023) The preventive effects of broccoli bioactives against cancer: Evidence from a validated rat glioma model. Biomed Pharmacother 168:115720. https://doi.org/10.1016/j.biopha.2023.115720

    Article  CAS  PubMed  Google Scholar 

  • Bahadoran Z, Mirmiran P, Hosseinpanah F, Rajab A, Asghari G, Azizi F (2012) Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Diabetes Res Clin Pract 96(3):348–354. https://doi.org/10.1016/j.diabres.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  • Bahoosh SR, Shokoohinia Y, Eftekhari M (2022) Glucosinolates and their hydrolysis products as potential nutraceuticals to combat cytokine storm in SARS-COV-2 DARU. J Pharm Sci 30(1):245–252 https://doi.org/10.1007/s40199-022-00435-x

    Article  CAS  Google Scholar 

  • Bao Y, Wang W, Zhou Z, Sun C (2014) Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention. PLoS ONE 9(12):e114764. https://doi.org/10.1371/journal.pone.0114764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batra S, Sahu RP, Kandala PK, Srivastava SK (2010) Benzyl isothiocyanate-mediated inhibition of histone deacetylase leads to NF-kappaB turnoff in human pancreatic carcinoma cells. Mol Cancer Ther 9(6):1596–1608. https://doi.org/10.1158/1535-7163.Mct-09-1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bello I, Smimmo M, di Villa D, Bianca R, Bucci M, Cirino G, Panza E, Brancaleone V (2023) Erucin, an H(2)S-releasing isothiocyanate, exerts anticancer effects in human triple-negative breast cancer cells triggering autophagy-dependent apoptotic cell death. Int J Mol Sci. https://doi.org/10.3390/ijms24076764

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett RN, Carvalho R, Mellon FA, Eagles J, Rosa EA (2007) Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. J Agric Food Chem 55(1):67–74. https://doi.org/10.1021/jf061997d

    Article  CAS  PubMed  Google Scholar 

  • Bertova A, Kontar S, Polozsanyi Z, Simkovic M, Rosenbergova Z, Rebros M, Sulova Z, Breier A, Imrichova D (2022) Effects of sulforaphane-induced cell death upon repeated passage of either P-glycoprotein-negative or P-glycoprotein-positive L1210 cell variants. Int J Mol Sci 23(18):10818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bommareddy A, Hahm ER, Xiao D, Powolny AA, Fisher AL, Jiang Y, Singh SV (2009) Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells. Cancer Res 69(8):3704–3712. https://doi.org/10.1158/0008-5472.Can-08-4344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boscaro V, Boffa L, Binello A, Amisano G, Fornasro S, Cravotto G, Gallicchio M (2018) Antiproliferative, Proapoptotic, antioxidant and antimicrobial effects of sinapis nigra L. and sinapis alba L. extracts. Molecules. https://doi.org/10.3390/molecules23113004

    Article  PubMed  PubMed Central  Google Scholar 

  • Briones-Herrera A, Ramírez-Camacho I, Zazueta C, Tapia E, Pedraza-Chaverri J (2020) Altered proximal tubule fatty acid utilization, mitophagy, fission and supercomplexes arrangement in experimental Fanconi syndrome are ameliorated by sulforaphane-induced mitochondrial biogenesis. Free Radic Biol Med 153:54–70. https://doi.org/10.1016/j.freeradbiomed.2020.04.010

    Article  CAS  PubMed  Google Scholar 

  • Chen HE, Lin JF, Tsai TF, Lin YC, Chou KY, Hwang TI (2018) Allyl isothiocyanate induces autophagy through the up-regulation of beclin-1 in human prostate cancer cells. Am J Chin Med: https://doi.org/10.1142/s0192415x18500830

    Article  PubMed  Google Scholar 

  • Citi V, Martelli A, Testai L, Marino A, Breschi MC, Calderone V (2014) Hydrogen sulfide releasing capacity of natural isothiocyanates: is it a reliable explanation for the multiple biological effects of Brassicaceae? Planta Med 80(8–9):610–613. https://doi.org/10.1055/s-0034-1368591

    Article  CAS  PubMed  Google Scholar 

  • clinicaltrials.gov. "clinicaltrials.gov." Retrieved October, 2023., 2023, from https://www.clinicaltrials.gov/.

  • Cocchi V, Jávega B, Gasperini S, O’Connor JE, Lenzi M, Hrelia P (2022) 6-(Methylsulfonyl) hexyl isothiocyanate: a chemopreventive agent inducing autophagy in leukemia cell lines. Biomolecules. https://doi.org/10.3390/biom12101485

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa-Pérez A, Núñez-Gómez V, Baenas N, Di Pede G, Achour M, Manach C, Mena P, Del Rio D, García-Viguera C, Moreno DA, Domínguez-Perles R (2023) Systematic review on the metabolic interest of glucosinolates and their bioactive derivatives for human health. Nutrients. https://doi.org/10.3390/nu15061424

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotzomi-Ortega I, Aguilar-Alonso P, Reyes-Leyva J, Maycotte P (2018) Autophagy and its role in protein secretion: implications for cancer therapy. Mediators Inflamm 2018:4231591. https://doi.org/10.1155/2018/4231591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crichlow GV, Fan C, Keeler C, Hodsdon M, Lolis EJ (2012) Structural interactions dictate the kinetics of macrophage migration inhibitory factor inhibition by different cancer-preventive isothiocyanates. Biochemistry 51(38):7506–7514. https://doi.org/10.1021/bi3005494

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70(2):348–383. https://doi.org/10.1124/pr.117.014753

    Article  CAS  PubMed  Google Scholar 

  • Cykowiak M, Krajka-Kuźniak V, Baer-Dubowska W (2022) Combinations of phytochemicals more efficiently than single components activate Nrf2 and induce the expression of antioxidant enzymes in pancreatic cancer cells. Nutr Cancer 74(3):996–1011. https://doi.org/10.1080/01635581.2021.1933097

    Article  CAS  PubMed  Google Scholar 

  • Darvekar SR, Elvenes J, Brenne HB, Johansen T, Sjøttem E (2014) SPBP is a sulforaphane induced transcriptional coactivator of NRF2 regulating expression of the autophagy receptor p62/SQSTM1. PLoS ONE 9(1):e85262. https://doi.org/10.1371/journal.pone.0085262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath J, Gammoh N, Ryan KM (2023) Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol 24(8):560–575. https://doi.org/10.1038/s41580-023-00585-z

    Article  CAS  PubMed  Google Scholar 

  • Deretic V (2021) Autophagy in inflammation, infection, and immunometabolism. Immunity 54(3):437–453. https://doi.org/10.1016/j.immuni.2021.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Gioia F, Petropoulos SA (2021) Glucosinolates. Springer International Publishing, Cham, Food Bioactives and Health, pp 41–77

    Google Scholar 

  • Dinh TN, Parat MO, Ong YS, Khaw KY (2021) Anticancer activities of dietary benzyl isothiocyanate: a comprehensive review. Pharmacol Res 169:105666. https://doi.org/10.1016/j.phrs.2021.105666

    Article  CAS  PubMed  Google Scholar 

  • Engelen-Eigles G, Holden G, Cohen JD, Gardner G (2006) The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J Agric Food Chem 54(2):328–334. https://doi.org/10.1021/jf051857o

    Article  CAS  PubMed  Google Scholar 

  • Ernst IM, Palani K, Esatbeyoglu T, Schwarz K, Rimbach G (2013) Synthesis and Nrf2-inducing activity of the isothiocyanates iberverin, iberin and cheirolin. Pharmacol Res 70(1):155–162. https://doi.org/10.1016/j.phrs.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  • Esteve M (2020a) Mechanisms underlying biological effects of cruciferous glucosinolate-derived isothiocyanates/indoles: a focus on metabolic syndrome. Front Nutr 7:111. https://doi.org/10.3389/fnut.2020.00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteve M (2020b) Mechanisms underlying biological effects of cruciferous glucosinolate-derived isothiocyanates/indoles: a focus on metabolic syndrome. Front Nutr. https://doi.org/10.3389/fnut.2020.00111

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes RO, De Castro AL, Bonetto JH, Ortiz VD, Müller DD, Campos-Carraro C, Barbosa S, Neves LT, Xavier LL, Schenkel PC, Singal P, Khaper N, da Rosa Araujo AS, Belló-Klein A (2016) Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins. J Nutr Biochem 34:106–117. https://doi.org/10.1016/j.jnutbio.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  • Fernández ÁF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, Levine B (2018) Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558(7708):136–140. https://doi.org/10.1038/s41586-018-0162-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frandsen HB, Sørensen JC, Petersen IL, Sørensen H (2020) Glutamine as an ammonia donor in catabolism of the glucosinolate, sinalbin, in biosynthesis of 4-hydroxybenzylamine. J Nat Prod 83(2):179–184. https://doi.org/10.1021/acs.jnatprod.9b00767

    Article  CAS  PubMed  Google Scholar 

  • Fuke Y, Shinoda S, Nagata I, Sawaki S, Murata M, Ryoyama K, Koizumi K, Saiki I, Nomura T (2006) Preventive effect of oral administration of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (Wasabia japonica Matsum) against pulmonary metastasis of B16-BL6 mouse melanoma cells. Cancer Detect Prev 30(2):174–179. https://doi.org/10.1016/j.cdp.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  • Gabriel D, Roedl D, Gordon LB, Djabali K (2015) Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts. Aging Cell 14(1):78–91. https://doi.org/10.1111/acel.12300

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, De Santi M, Crinelli R, De Marco C, Zaffaroni N, Duranti A, Brandi G, Magnani M (2012) Induction of endoplasmic reticulum stress response by the indole-3-carbinol cyclic tetrameric derivative CTet in human breast cancer cell lines. PLoS ONE 7(8):e43249. https://doi.org/10.1371/journal.pone.0043249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong TT, Guo Q, Li X, Zhang TN, Liu FH, He XH, Lin B, Wu QJ (2021) Isothiocyanate Iberin inhibits cell proliferation and induces cell apoptosis in the progression of ovarian cancer by mediating ROS accumulation and GPX1 expression. Biomed Pharmacother 142:111533. https://doi.org/10.1016/j.biopha.2021.111533

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Wright SE, Kim SH, Srivastava SK (2014) Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta 1846(2):405–424. https://doi.org/10.1016/j.bbcan.2014.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gureev AP, Sadovnikova IS, Starkov NN, Starkov AA, Popov VN (2020) p62-Nrf2-p62 Mitophagy Regulatory Loop as a Target for Preventive Therapy of Neurodegenerative Diseases. Brain Sci. https://doi.org/10.3390/brainsci10110847

    Article  PubMed  PubMed Central  Google Scholar 

  • Hać A, Domachowska A, Narajczyk M, Cyske K, Pawlik A, Herman-Antosiewicz A (2015) S6K1 controls autophagosome maturation in autophagy induced by sulforaphane or serum deprivation. Eur J Cell Biol 94(10):470–481. https://doi.org/10.1016/j.ejcb.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  • Hahm ER, Singh KB, Kim SH, Powolny AA, Singh SV (2020) The Role of Lysosome-associated Membrane Protein 2 in Prostate Cancer Chemopreventive Mechanisms of Sulforaphane. Cancer Prev Res (phila) 13(8):661–672. https://doi.org/10.1158/1940-6207.Capr-20-0054

    Article  CAS  PubMed  Google Scholar 

  • Halling JF, Pilegaard H (2017) Autophagy-Dependent Beneficial Effects of Exercise. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a029777

    Article  PubMed  PubMed Central  Google Scholar 

  • He F, Ru X, Wen T (2020) NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci. https://doi.org/10.3390/ijms21134777

    Article  PubMed  PubMed Central  Google Scholar 

  • Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhäuser C (2001) Nuclear Factor & #x3ba;B Is a Molecular Target for Sulforaphane-mediated Anti-inflammatory Mechanisms *. J Biol Chem 276(34):32008–32015. https://doi.org/10.1074/jbc.M104794200

    Article  CAS  PubMed  Google Scholar 

  • Herzallah S, Holley R (2012) Determination of sinigrin, sinalbin, allyl- and benzyl isothiocyanates by RP-HPLC in mustard powder extracts. LWT 47(2):293–299. https://doi.org/10.1016/j.lwt.2012.01.022

    Article  CAS  Google Scholar 

  • Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. https://doi.org/10.1038/nrm.2017.95

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa Y, Hosokawa I, Shimoyama M, Fujii A, Sato J, Kadena K, Ozaki K, Hosaka K (2022) The anti-inflammatory effects of iberin on TNF-α-stimulated human oral epithelial cells. in vitro research. Biomedicines. https://doi.org/10.3390/biomedicines10123155

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Reggiori F (2022) Molecular regulation of autophagosome formation. Biochem Soc Trans 50(1):55–69. https://doi.org/10.1042/bst20210819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Eggler AL, Mesecar AD, van Breemen RB (2011) Modification of keap1 cysteine residues by sulforaphane. Chem Res Toxicol 24(4):515–521. https://doi.org/10.1021/tx100389r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhou Y, Yang G, Wang Y, Zheng Z, Li J, Yan Y, Wu W (2018) Sulforaphane-N-Acetyl-Cysteine inhibited autophagy leading to apoptosis via Hsp70-mediated microtubule disruption. Cancer Lett 431:85–95. https://doi.org/10.1016/j.canlet.2018.05.035

    Article  CAS  PubMed  Google Scholar 

  • Humbert M, Morán M, de la Cruz-Ojeda P, Muntané J, Wiedmer T, Apostolova N, McKenna SL, Velasco G, Balduini W, Eckhart L, Janji B, Sampaio-Marques B, Ludovico P, Žerovnik E, Langer R, Perren A, Engedal N, Tschan MP (2020) Assessing autophagy in archived tissue or how to capture autophagic flux from a tissue snapshot. Biology (basel). https://doi.org/10.3390/biology9030059

    Article  PubMed  Google Scholar 

  • Huo L, Su Y, Xu G, Zhai L, Zhao J (2019) Sulforaphane protects the male reproductive system of mice from obesity-induced damage: involvement of oxidative stress and autophagy. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16193759

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64(1):48–59. https://doi.org/10.1270/jsbbs.64.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav U, Ezhilarasan R, Vaughn SF, Berhow MA, Mohanam S (2007) Dietary isothiocyanate iberin inhibits growth and induces apoptosis in human glioblastoma cells. J Pharmacol Sci 103(2):247–251. https://doi.org/10.1254/jphs.sc0060148

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TO, Høiby N, Bjarnsholt T, Givskov M (2012) Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol 78(7):2410–2421. https://doi.org/10.1128/aem.05992-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, You L, Qiao J, Han W, Pan H (2023) Autophagy in colitis-associated colon cancer: exploring its potential role in reducing initiation and preventing IBD-Related CAC development. Autophagy. https://doi.org/10.1080/15548627.2023.2259214

    Article  PubMed  PubMed Central  Google Scholar 

  • Jo C, Kim S, Cho SJ, Choi KJ, Yun SM, Koh YH, Johnson GV, Park SI (2014) Sulforaphane induces autophagy through ERK activation in neuronal cells. FEBS Lett 588(17):3081–3088. https://doi.org/10.1016/j.febslet.2014.06.036

    Article  CAS  PubMed  Google Scholar 

  • Jurkowska H, Wróbel M, Szlęzak D, Jasek-Gajda E (2018) New aspects of antiproliferative activity of 4-hydroxybenzyl isothiocyanate, a natural H2S-donor. Amino Acids 50(6):699–709. https://doi.org/10.1007/s00726-018-2546-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S (2022) Beneficial health effects of glucosinolates-derived isothiocyanates on cardiovascular and neurodegenerative diseases. Molecules 27(3):624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanematsu S, Uehara N, Miki H, Yoshizawa K, Kawanaka A, Yuri T, Tsubura A (2010) Autophagy inhibition enhances sulforaphane-induced apoptosis in human breast cancer cells. Anticancer Res 30(9):3381–3390

    CAS  PubMed  Google Scholar 

  • Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD, White E (2014) Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov 4(8):914–927. https://doi.org/10.1158/2159-8290.CD-14-0363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasukabe T, Honma Y, Okabe-Kado J, Higuchi Y, Kato N, Kumakura S (2016) Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells. Oncol Rep 36(2):968–976. https://doi.org/10.3892/or.2016.4867

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Chamovitz DA (2017) Wounding of Arabidopsis leaves induces indole-3-carbinol-dependent autophagy in roots of Arabidopsis thaliana. Plant J 91(5):779–787. https://doi.org/10.1111/tpj.13610

    Article  CAS  PubMed  Google Scholar 

  • Khalifeh M, Read MI, Barreto GE, Sahebkar A (2020) Trehalose against Alzheimer’s disease: insights into a potential therapy. BioEssays 42(8):e1900195. https://doi.org/10.1002/bies.201900195

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Park SU (2018) Current results on the biological and pharmacological activities of Indole-3-carbinol. Excli j 17:181–185. https://doi.org/10.17179/excli2017-1028

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim AJ, Park JE, Cho YH, Lim DS, Lee JS (2021) Effect of 7-methylsulfinylheptyl isothiocyanate on the inhibition of melanogenesis in B16–F1 Cells. Life (basel). https://doi.org/10.3390/life11020162

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiser C, Gonul CP, Olcum M, Genc S (2021) Inhibitory effects of sulforaphane on NLRP3 inflammasome activation. Mol Immunol 140:175–185. https://doi.org/10.1016/j.molimm.2021.10.014

    Article  CAS  PubMed  Google Scholar 

  • Kitakaze T, Yuan S, Inoue M, Yoshioka Y, Yamashita Y, Ashida, H (2020) 6-(Methylsulfinyl)hexyl isothiocyanate protects acetaldehyde-caused cytotoxicity through the induction of aldehyde dehydrogenase in hepatocytes. Archives Biochem Biophys 686:108329. https://doi.org/10.1016/j.abb.2020.108329

    Article  CAS  Google Scholar 

  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, Adamopoulos IE, Adeli K, Adolph TE, Adornetto A, Aflaki E, Agam G, Agarwal A, Aggarwal BB, Agnello M, Agostinis P, Agrewala JN, Agrotis A, Aguilar PV, Ahmad ST, Ahmed ZM, Ahumada-Castro U, Aits S, Aizawa S, Akkoc Y, Akoumianaki T, Akpinar HA, Al-Abd AM, Al-Akra L, Al-Gharaibeh A, Alaoui-Jamali MA, Alberti S, Alcocer-Gomez E, Alessandri C, Ali M, Alim Al-Bari MA, Aliwaini S, Alizadeh J, Almacellas E, Almasan A, Alonso A, Alonso GD, Altan-Bonnet N, Altieri DC, Alvarez EMC, Alves S, Alves da Costa C, Alzaharna MM, Amadio M, Amantini C, Amaral C, Ambrosio S, Amer AO, Ammanathan V, An Z, Andersen SU, Andrabi SA, Andrade-Silva M, Andres AM, Angelini S, Ann D, Anozie UC, Ansari MY, Antas P, Antebi A, Anton Z, Anwar T, Apetoh L, Apostolova N, Araki T, Araki Y, Arasaki K, Araujo WL, Araya J, Arden C, Arevalo MA, Arguelles S, Arias E, Arikkath J, Arimoto H, Ariosa AR, Armstrong-James D, Arnaune-Pelloquin L, Aroca A, Arroyo DS, Arsov I, Artero R, Asaro DML, Aschner M, Ashrafizadeh M, Ashur-Fabian O, Atanasov AG, Au AK, Auberger P, Auner HW, Aurelian L, Autelli R, Avagliano L, Avalos Y, Aveic S, Aveleira CA, Avin-Wittenberg T, Aydin Y, Ayton S, Ayyadevara S, Azzopardi M, aba M, Backer JM, Backues SK, Bae DH, Bae ON, Bae SH, Baehrecke EH, Baek A, Baek SH, Baek SH, Bagetta G, Bagniewska-Zadworna A, Bai H, Bai J, Bai X, Bai Y, Bairagi N, Baksi S, Balbi T, Baldari CT, Balduini W, Ballabio A, Ballester M, Balazadeh S, Balzan R, Bandopadhyay R, Banerjee S, Banerjee S, Banreti A, Bao Y, Baptista MS, Baracca A, Barbati C, Bargiela A, Barila D, Barlow PG, Barmada SJ, Barreiro E, Barreto GE, Bartek J, Bartel B, Bartolome A, Barve GR, Basagoudanavar SH, Bassham DC, Bast RC Jr, Basu A, Batoko H, Batten I, Baulieu EE, Baumgarner BL, Bayry J, Beale R, Beau I, Beaumatin F, Bechara LRG, Beck GR Jr, Beers MF, Begun J, Behrends C, Behrens GMN, Bei R, Bejarano E, Bel S, Behl C, Belaid A, Belgareh-Touze N, Bellarosa C, Belleudi F, Bello Perez M, Bello-Morales R, Beltran JSO, Beltran S, Benbrook DM, Bendorius M, Benitez BA, Benito-Cuesta I, Bensalem J, Berchtold MW, Berezowska S, Bergamaschi D, Bergami M, Bergmann A, Berliocchi L, Berlioz-Torrent C, Bernard A, Berthoux L, Besirli CG, Besteiro S, Betin VM, Beyaert R, Bezbradica JS, Bhaskar K, Bhatia-Kissova I, Bhattacharya R, Bhattacharya S, Bhattacharyya S, Bhuiyan MS, Bhutia SK, Bi L, Bi X, Biden TJ, Bijian K, Billes VA, Binart N, Bincoletto C, Birgisdottir AB, Bjorkoy G, Blanco G, Blas-Garcia A, Blasiak J, Blomgran R, Blomgren K, Blum JS, Boada-Romero E, Boban M, Boesze-Battaglia K, Boeuf P, Boland B, Bomont P, Bonaldo P, Bonam SR, Bonfili L, Bonifacino JS, Boone BA, Bootman MD, Bordi M, Borner C, Bornhauser BC, Borthakur G, Bosch J, Bose S, Botana LM, Botas J, Boulanger CM, Boulton ME, Bourdenx M, Bourgeois B, Bourke NM, Bousquet G, Boya P, Bozhkov PV, Bozi LHM, Bozkurt TO, Brackney DE, Brandts CH, Braun RJ, Braus GH, Bravo-Sagua R, Bravo-San Pedro JM, Brest P, Bringer MA, Briones-Herrera A, Broaddus VC, Brodersen P, Brodsky JL, Brody SL, Bronson PG, Bronstein JM, Brown CN, Brown RE, Brum PC, Brumell JH, Brunetti-Pierri N, Bruno D, Bryson-Richardson RJ, Bucci C, Buchrieser C, Bueno M, Buitrago-Molina LE, Buraschi S, Buch S, Buchan JR, Buckingham EM, Budak H, Budini M, Bultynck G, Burada F, Burgoyne JR, Buron MI, Bustos V, Buttner S, Butturini E, Byrd A, Cabas I, Cabrera-Benitez S, Cadwell K, Cai J, Cai L, Cai Q, Cairo M, Calbet JA, Caldwell GA, Caldwell KA, Call JA, Calvani R, Calvo AC, Calvo-Rubio Barrera M, Camara NO, Camonis JH, Camougrand N, Campanella M, Campbell EM, Campbell-Valois FX, Campello S, Campesi I, Campos JC, Camuzard O, Cancino J, Candido de Almeida D, Canesi L, Caniggia I, Canonico B, Canti C, Cao B, Caraglia M, Carames B, Carchman EH, Cardenal-Munoz E, Cardenas C, Cardenas L, Cardoso SM, Carew JS, Carle GF, Carleton G, Carloni S, Carmona-Gutierrez D, Carneiro LA, Carnevali O, Carosi JM, Carra S, Carrier A, Carrier L, Carroll B, Carter AB, Carvalho AN, Casanova M, Casas C, Casas J, Cassioli C, Castillo EF, Castillo K, Castillo-Lluva S, Castoldi F, Castori M, Castro AF, Castro-Caldas M, Castro-Hernandez J, Castro-Obregon S, Catz SD, Cavadas C, Cavaliere F, Cavallini G, Cavinato M, Cayuela ML, Cebollada Rica P, Cecarini V, Cecconi F, Cechowska-Pasko M, Cenci S, Ceperuelo-Mallafre V, Cerqueira JJ, Cerutti JM, Cervia D, Cetintas VB, Cetrullo S, Chae HJ, Chagin AS, Chai CY, Chakrabarti G, Chakrabarti O, Chakraborty T, Chakraborty T, Chami M, Chamilos G, Chan DW, Chan EYW, Chan ED, Chan HYE, Chan HH, Chan H, Chan MTV, Chan YS, Chandra PK, Chang CP, Chang C, Chang HC, Chang K, Chao J, Chapman T, Charlet-Berguerand N, Chatterjee S, Chaube SK, Chaudhary A, Chauhan S, Chaum E, Checler F, Cheetham ME, Chen CS, Chen GC, Chen JF, Chen LL, Chen L, Chen L, Chen M, Chen MK, Chen N, Chen Q, Chen RH, Chen S, Chen W, Chen W, Chen XM, Chen XW, Chen X, Chen Y, Chen YG, Chen Y, Chen Y, Chen YJ, Chen YQ, Chen ZS, Chen Z, Chen ZH, Chen ZJ, Chen Z, Cheng H, Cheng J, Cheng SY, Cheng W, Cheng X, Cheng XT, Cheng Y, Cheng Z, Chen Z, Cheong H, Cheong JK, Chernyak BV, Cherry S, Cheung CFR, Cheung CHA, Cheung KH, Chevet E, Chi RJ, Chiang AKS, Chiaradonna F, Chiarelli R, Chiariello M, Chica N, Chiocca S, Chiong M, Chiou SH, Chiramel AI, Chiurchiu V, Cho DH, Choe SK, Choi AMK, Choi ME, Choudhury KR, Chow NS, Chu CT, Chua JP, Chua JJE, Chung H, Chung KP, Chung S, Chung SH, Chung YL, Cianfanelli V, Ciechomska IA, Cifuentes M, Cinque L, Cirak S, Cirone M, Clague MJ, Clarke R, Clementi E, Coccia EM, Codogno P, Cohen E, Cohen MM, Colasanti T, Colasuonno F, Colbert RA, Colell A, Colic M, Coll NS, Collins MO, Colombo MI, Colon-Ramos DA, Combaret L, Comincini S, Cominetti MR, Consiglio A, Conte A, Conti F, Contu VR, Cookson MR, Coombs KM, Coppens I, Corasaniti MT, Corkery DP, Cordes N, Cortese K, Costa MDC, Costantino S, Costelli P, Coto-Montes A, Crack PJ, Crespo JL, Criollo A, Crippa V, Cristofani R, Csizmadia T, Cuadrado A, Cui B, Cui J, Cui Y, Cui Y, Culetto E, Cumino AC, Cybulsky AV, Czaja MJ, Czuczwar SJ, D’Adamo S, D’Amelio M, D’Arcangelo D, D’Lugos AC, D’Orazi G, da Silva JA, Dafsari HS, Dagda RK, Dagdas Y, Daglia M, Dai X, Dai Y, Dai Y, Dal Col J, Dalhaimer P, Dalla Valle L, Dallenga T, Dalmasso G, Damme M, Dando I, Dantuma NP, Darling AL, Das H, Dasarathy S, Dasari SK, Dash S, Daumke O, Dauphinee AN, Davies JS, Davila VA, Davis RJ, Davis T, Dayalan Naidu S, De Amicis F, De Bosscher K, De Felice F, De Franceschi L, De Leonibus C, de Mattos Barbosa MG, De Meyer GRY, De Milito A, De Nunzio C, De Palma C, De Santi M, De Virgilio C, De Zio D, Debnath J, DeBosch BJ, Decuypere JP, Deehan MA, Deflorian G, DeGregori J, Dehay B, Del Rio G, Delaney JR, Delbridge LMD, Delorme-Axford E, Delpino MV, Demarchi F, Dembitz V, Demers ND, Deng H, Deng Z, Dengjel J, Dent P, Denton D, DePamphilis ML, Der CJ, Deretic V, Descoteaux A, Devis L, Devkota S, Devuyst O, Dewson G, Dharmasivam M, Dhiman R, di Bernardo D, Di Cristina M, Di Domenico F, Di Fazio P, Di Fonzo A, Di Guardo G, Di Guglielmo GM, Di Leo L, Di Malta C, Di Nardo A, Di Rienzo M, Di Sano F, Diallinas G, Diao J, Diaz-Araya G, Diaz-Laviada I, Dickinson JM, Diederich M, Dieude M, Dikic I, Ding S, Ding WX, Dini L, Dinic J, Dinic M, Dinkova-Kostova AT, Dionne MS, Distler JHW, Diwan A, Dixon IMC, Djavaheri-Mergny M, Dobrinski I, Dobrovinskaya O, Dobrowolski R, Dobson RCJ, Dokic J, Dokmeci Emre S, Donadelli M, Dong B, Dong X, Dong Z, Dorn Ii GW, Dotsch V, Dou H, Dou J, Dowaidar M, Dridi S, Drucker L, Du A, Du C, Du G, Du HN, Du LL, du Toit A, Duan SB, Duan X, Duarte SP, Dubrovska A, Dunlop EA, Dupont N, Duran RV, Dwarakanath BS, Dyshlovoy SA, Ebrahimi-Fakhari D, Eckhart L, Edelstein CL, Efferth T, Eftekharpour E, Eichinger L, Eid N, Eisenberg T, Eissa NT, Eissa S, Ejarque M, El Andaloussi A, El-Hage N, El-Naggar S, Eleuteri AM, El-Shafey ES, Elgendy M, Eliopoulos AG, Elizalde MM, Elks PM, Elsasser HP, Elsherbiny ES, Emerling BM, Emre NCT, Eng CH, Engedal N, Engelbrecht AM, Engelsen AST, Enserink JM, Escalante R, Esclatine A, Escobar-Henriques M, Eskelinen EL, Espert L, Eusebio MO, Fabrias G, Fabrizi C, Facchiano A, Facchiano F, Fadeel B, Fader C, Faesen AC, Fairlie WD, Falco A, Falkenburger BH, Fan D, Fan J, Fan Y, Fang EF, Fang Y, Fang Y, Fanto M, Farfel-Becker T, Faure M, Fazeli G, Fedele AO, Feldman AM, Feng D, Feng J, Feng L, Feng Y, Feng Y, Feng W, Fenz Araujo T, Ferguson TA, Fernandez AF, Fernandez-Checa JC, Fernandez-Veledo S, Fernie AR, Ferrante AW Jr, Ferraresi A, Ferrari MF, Ferreira JCB, Ferro-Novick S, Figueras A, Filadi R, Filigheddu N, Filippi-Chiela E, Filomeni G, Fimia GM, Fineschi V, Finetti F, Finkbeiner S, Fisher EA, Fisher PB, Flamigni F, Fliesler SJ, Flo TH, Florance I, Florey O, Florio T, Fodor E, Follo C, Fon EA, Forlino A, Fornai F, Fortini P, Fracassi A, Fraldi A, Franco B, Franco R, Franconi F, Frankel LB, Friedman SL, Frohlich LF, Fruhbeck G, Fuentes JM, Fujiki Y, Fujita N, Fujiwara Y, Fukuda M, Fulda S, Furic L, Furuya N, Fusco C, Gack MU, Gaffke L, Galadari S, Galasso A, Galindo MF, Gallolu Kankanamalage S, Galluzzi L, Galy V, Gammoh N, Gan B, Ganley IG, Gao F, Gao H, Gao M, Gao P, Gao SJ, Gao W, Gao X, Garcera A, Garcia MN, Garcia VE, Garcia-Del Portillo F, Garcia-Escudero V, Garcia-Garcia A, Garcia-Macia M, Garcia-Moreno D, Garcia-Ruiz C, Garcia-Sanz P, Garg AD, Gargini R, Garofalo T, Garry RF, Gassen NC, Gatica D, Ge L, Ge W, Geiss-Friedlander R, Gelfi C, Genschik P, Gentle IE, Gerbino V, Gerhardt C, Germain K, Germain M, Gewirtz DA, Ghasemipour Afshar E, Ghavami S, Ghigo A, Ghosh M, Giamas G, Giampietri C, Giatromanolaki A, Gibson GE, Gibson SB, Ginet V, Giniger E, Giorgi C, Girao H, Girardin SE, Giridharan M, Giuliano S, Giulivi C, Giuriato S, Giustiniani J, Gluschko A, Goder V, Goginashvili A, Golab J, Goldstone DC, Golebiewska A, Gomes LR, Gomez R, Gomez-Sanchez R, Gomez-Puerto MC, Gomez-Sintes R, Gong Q, Goni FM, Gonzalez-Gallego J, Gonzalez-Hernandez T, Gonzalez-Polo RA, Gonzalez-Reyes JA, Gonzalez-Rodriguez P, Goping IS, Gorbatyuk MS, Gorbunov NV, Gorgulu K, Gorojod RM, Gorski SM, Goruppi S, Gotor C, Gottlieb RA, Gozes I, Gozuacik D, Graef M, Graler MH, Granatiero V, Grasso D, Gray JP, Green DR, Greenhough A, Gregory SL, Griffin EF, Grinstaff MW, Gros F, Grose C, Gross AS, Gruber F, Grumati P, Grune T, Gu X, Guan JL, Guardia CM, Guda K, Guerra F, Guerri C, Guha P, Guillen C, Gujar S, Gukovskaya A, Gukovsky I, Gunst J, Gunther A, Guntur AR, Guo C, Guo C, Guo H, Guo LW, Guo M, Gupta P, Gupta SK, Gupta S, Gupta VB, Gupta V, Gustafsson AB, Gutterman DDHBR, Haapasalo A, Haber JE, Hac A, Hadano S, Hafren AJ, Haidar M, Hall BS, Hallden G, Hamacher-Brady A, Hamann A, Hamasaki M, Han W, Hansen M, Hanson PI, Hao Z, Harada M, Harhaji-Trajkovic L, Hariharan N, Haroon N, Harris J, Hasegawa T, Hasima Nagoor N, Haspel JA, Haucke V, Hawkins WD, Hay BA, Haynes CM, Hayrabedyan SB, Hays TS, He C, He Q, He RR, He YW, He YY, Heakal Y, Heberle AM, Hejtmancik JF, Helgason GV, Henkel V, Herb M, Hergovich A, Herman-Antosiewicz A, Hernandez A, Hernandez C, Hernandez-Diaz S, Hernandez-Gea V, Herpin A, Herreros J, Hervas JH, Hesselson D, Hetz C, Heussler VT, Higuchi Y, Hilfiker S, Hill JA, Hlavacek WS, Ho EA, Ho IHT, Ho PW, Ho SL, Ho WY, Hobbs GA, Hochstrasser M, Hoet PHM, Hofius D, Hofman P, Hohn A, Holmberg CI, Hombrebueno JR, Yi-Ren Hong CH, Hooper LV, Hoppe T, Horos R, Hoshida Y, Hsin IL, Hsu HY, Hu B, Hu D, Hu LF, Hu MC, Hu R, Hu W, Hu YC, Hu ZW, Hua F, Hua J, Hua Y, Huan C, Huang C, Huang C, Huang C, Huang C, Huang H, Huang K, Huang MLH, Huang R, Huang S, Huang T, Huang X, Huang YJ, Huber TB, Hubert V, Hubner CA, Hughes SM, Hughes WE, Humbert M, Hummer G, Hurley JH, Hussain S, Hussain S, Hussey PJ, Hutabarat M, Hwang HY, Hwang S, Ieni A, Ikeda F, Imagawa Y, Imai Y, Imbriano C, Imoto M, Inman DM, Inoki K, Iovanna J, Iozzo RV, Ippolito G, Irazoqui JE, Iribarren P, Ishaq M, Ishikawa M, Ishimwe N, Isidoro C, Ismail N, Issazadeh-Navikas S, Itakura E, Ito D, Ivankovic D, Ivanova S, Iyer AKV, Izquierdo JM, Izumi M, Jaattela M, Jabir MS, Jackson WT, Jacobo-Herrera N, Jacomin AC, Jacquin E, Jadiya P, Jaeschke H, Jagannath C, Jakobi AJ, Jakobsson J, Janji B, Jansen-Durr P, Jansson PJ, Jantsch J, Januszewski S, Jassey A, Jean S, Jeltsch-David H, Jendelova P, Jenny A, Jensen TE, Jessen N, Jewell JL, Ji J, Jia L, Jia R, Jiang L, Jiang Q, Jiang R, Jiang T, Jiang X, Jiang Y, Jimenez-Sanchez M, Jin EJ, Jin F, Jin H, Jin L, Jin L, Jin M, Jin S, Jo EK, Joffre C, Johansen T, Johnson GVW, Johnston SA, Jokitalo E, Jolly MK, Joosten LAB, Jordan J, Joseph B, Ju D, Ju JS, Ju J, Juarez E, Judith D, Juhasz G, Jun Y, Jung CH, Jung SC, Jung YK, Jungbluth H, Jungverdorben J, Just S, Kaarniranta K, Kaasik A, Kabuta T, Kaganovich D, Kahana A, Kain R, Kajimura S, Kalamvoki M, Kalia M, Kalinowski DS, Kaludercic N, Kalvari I, Kaminska J, Kaminskyy VO, Kanamori H, Kanasaki K, Kang C, Kang R, Kang SS, Kaniyappan S, Kanki T, Kanneganti TD, Kanthasamy AG, Kanthasamy A, Kantorow M, Kapuy O, Karamouzis MV, Karim MR, Karmakar P, Katare RG, Kato M, Kaufmann SHE, Kauppinen A, Kaushal GP, Kaushik S, Kawasaki K, Kazan K, Ke PY, Keating DJ, Keber U, Kehrl JH, Keller KE, Keller CW, Kemper JK, Kenific CM, Kepp O, Kermorgant S, Kern A, Ketteler R, Keulers TG, Khalfin B, Khalil H, Khambu B, Khan SY, Khandelwal VKM, Khandia R, Kho W, Khobrekar NV, Khuansuwan S, Khundadze M, Killackey SA, Kim D, Kim DR, Kim DH, Kim DE, Kim EY, Kim EK, Kim HR, Kim HS, Hyung-Ryong K, Kim JH, Kim JK, Kim JH, Kim J, Kim JH, Kim KI, Kim PK, Kim SJ, Kimball SR, Kimchi A, Kimmelman AC, Kimura T, King MA, Kinghorn KJ, Kinsey CG, Kirkin V, Kirshenbaum LA, Kiselev SL, Kishi S, Kitamoto K, Kitaoka Y, Kitazato K, Kitsis RN, Kittler JT, Kjaerulff O, Klein PS, Klopstock T, Klucken J, Knaevelsrud H, Knorr RL, Ko BCB, Ko F, Ko JL, Kobayashi H, Kobayashi S, Koch I, Koch JC, Koenig U, Kogel D, Koh YH, Koike M, Kohlwein SD, Kocaturk NM, Komatsu M, Konig J, Kono T, Kopp BT, Korcsmaros T, Korkmaz G, Korolchuk VI, Korsnes MS, Koskela A, Kota J, Kotake Y, Kotler ML, Kou Y, Koukourakis MI, Koustas E, Kovacs AL, Kovacs T, Koya D, Kozako T, Kraft C, Krainc D, Kramer H, Krasnodembskaya AD, Kretz-Remy C, Kroemer G, Ktistakis NT, Kuchitsu K, Kuenen S, Kuerschner L, Kukar T, Kumar A, Kumar A, Kumar D, Kumar D, Kumar S, Kume S, Kumsta C, Kundu CN, Kundu M, Kunnumakkara AB, Kurgan L, Kutateladze TG, Kutlu O, Kwak S, Kwon HJ, Kwon TK, Kwon YT, Kyrmizi I, La Spada A, Labonte P, Ladoire S, Laface I, Lafont F, Lagace DC, Lahiri V, Lai Z, Laird AS, Lakkaraju A, Lamark T, Lan SH, Landajuela A, Lane DJR, Lane JD, Lang CH, Lange C, Langel U, Langer R, Lapaquette P, Laporte J, LaRusso NF, Lastres-Becker I, Lau WCY, Laurie GW, Lavandero S, Law BYK, Law HK, Layfield R, Le W, Le Stunff H, Leary AY, Lebrun JJ, Leck LYW, Leduc-Gaudet JP, Lee C, Lee CP, Lee DH, Lee EB, Lee EF, Lee GM, Lee HJ, Lee HK, Lee JM, Lee JS, Lee JA, Lee JY, Lee JH, Lee M, Lee MG, Lee MJ, Lee MS, Lee SY, Lee SJ, Lee SY, Lee SB, Lee WH, Lee YR, Lee YH, Lee Y, Lefebvre C, Legouis R, Lei YL, Lei Y, Leikin S, Leitinger G, Lemus L, Leng S, Lenoir O, Lenz G, Lenz HJ, Lenzi P, Leon Y, Leopoldino AM, Leschczyk C, Leskela S, Letellier E, Leung CT, Leung PS, Leventhal JS, Levine B, Lewis PA, Ley K, Li B, Li DQ, Li J, Li J, Li J, Li K, Li L, Li M, Li M, Li M, Li M, Li M, Li PL, Li MQ, Li Q, Li S, Li T, Li W, Li W, Li X, Li YP, Li Y, Li Z, Li Z, Li Z, Lian J, Liang C, Liang Q, Liang W, Liang Y, Liang Y, Liao G, Liao L, Liao M, Liao YF, Librizzi M, Lie PPY, Lilly MA, Lim HJ, Lima TRR, Limana F, Lin C, Lin CW, Lin DS, Lin FC, Lin JD, Lin KM, Lin KH, Lin LT, Lin PH, Lin Q, Lin S, Lin SJ, Lin W, Lin X, Lin YX, Lin YS, Linden R, Lindner P, Ling SC, Lingor P, Linnemann AK, Liou YC, Lipinski MM, Lipovsek S, Lira VA, Lisiak N, Liton PB, Liu C, Liu CH, Liu CF, Liu CH, Liu F, Liu H, Liu HS, Liu HF, Liu H, Liu J, Liu J, Liu J, Liu L, Liu L, Liu M, Liu Q, Liu W, Liu W, Liu XH, Liu X, Liu X, Liu X, Liu X, Liu Y, Liu Y, Liu Y, Liu Y, Liu Y, Livingston JA, Lizard G, Lizcano JM, Ljubojevic-Holzer S, Leonart MEL, Llobet-Navas D, Llorente A, Lo CH, Lobato-Marquez D, Long Q, Long YC, Loos B, Loos JA, Lopez MG, Lopez-Domenech G, Lopez-Guerrero JA, Lopez-Jimenez AT, Lopez-Perez O, Lopez-Valero I, Lorenowicz MJ, Lorente M, Lorincz P, Lossi L, Lotersztajn S, Lovat PE, Lovell JF, Lovy A, Low P, Lu G, Lu H, Lu JH, Lu JJ, Lu M, Lu S, Luciani A, Lucocq JM, Ludovico P, Luftig MA, Luhr M, Luis-Ravelo D, Lum JJ, Luna-Dulcey L, Lund AH, Lund VK, Lunemann JD, Luningschror P, Luo H, Luo R, Luo S, Luo Z, Luparello C, Luscher B, Luu L, Lyakhovich A, Lyamzaev KG, Lystad AH, Lytvynchuk L, Ma AC, Ma C, Ma M, Ma NF, Ma QH, Ma X, Ma Y, Ma Z, MacDougald OA, Macian F, MacIntosh GC, MacKeigan JP, Macleod KF, Maday S, Madeo F, Madesh M, Madl T, Madrigal-Matute J, Maeda A, Maejima Y, Magarinos M, Mahavadi P, Maiani E, Maiese K, Maiti P, Maiuri MC, Majello B, Major MB, Makareeva E, Malik F, Mallilankaraman K, Malorni W, Maloyan A, Mammadova N, Man GCW, Manai F, Mancias JD, Mandelkow EM, Mandell MA, Manfredi AA, Manjili MH, Manjithaya R, Manque P, Manshian BB, Manzano R, Manzoni C, Mao K, Marchese C, Marchetti S, Marconi AM, Marcucci F, Mardente S, Mareninova OA, Margeta M, Mari M, Marinelli S, Marinelli O, Marino G, Mariotto S, Marshall RS, Marten MR, Martens S, Martin APJ, Martin KR, Martin S, Martin S, Martin-Segura A, Martin-Acebes MA, Martin-Burriel I, Martin-Rincon M, Martin-Sanz P, Martina JA, Martinet W, Martinez A, Martinez A, Martinez J, Martinez Velazquez M, Martinez-Lopez N, Martinez-Vicente M, Martins DO, Martins JO, Martins WK, Martins-Marques T, Marzetti E, Masaldan S, Masclaux-Daubresse C, Mashek DG, Massa V, Massieu L, Masson GR, Masuelli L, Masyuk AI, Masyuk TV, Matarrese P, Matheu A, Matoba S, Matsuzaki S, Mattar P, Matte A, Mattoscio D, Mauriz JL, Mauthe M, Mauvezin C, Maverakis E, Maycotte P, Mayer J, Mazzoccoli G, Mazzoni C, Mazzulli JR, McCarty N, McDonald C, McGill MR, McKenna SL, McLaughlin B, McLoughlin F, McNiven MA, McWilliams TG, Mechta-Grigoriou F, Medeiros TC, Medina DL, Megeney LA, Megyeri K, Mehrpour M, Mehta JL, Meijer AJ, Meijer AH, Mejlvang J, Melendez A, Melk A, Memisoglu G, Mendes AF, Meng D, Meng F, Meng T, Menna-Barreto R, Menon MB, Mercer C, Mercier AE, Mergny JL, Merighi A, Merkley SD, Merla G, Meske V, Mestre AC, Metur SP, Meyer C, Meyer H, Mi W, Mialet-Perez J, Miao J, Micale L, Miki Y, Milan E, Milczarek M, Miller DL, Miller SI, Miller S, Millward SW, Milosevic I, Minina EA, Mirzaei H, Mirzaei HR, Mirzaei M, Mishra A, Mishra N, Mishra PK, Misirkic Marjanovic M, Misasi R, Misra A, Misso G, Mitchell C, Mitou G, Miura T, Miyamoto S, Miyazaki M, Miyazaki M, Miyazaki T, Miyazawa K, Mizushima N, Mogensen TH, Mograbi B, Mohammadinejad R, Mohamud Y, Mohanty A, Mohapatra S, Mohlmann T, Mohmmed A, Moles A, Moley KH, Molinari M, Mollace V, Moller AB, Mollereau B, Mollinedo F, Montagna C, Monteiro MJ, Montella A, Montes LR, Montico B, Mony VK, Monzio Compagnoni G, Moore MN, Moosavi MA, Mora AL, Mora M, Morales-Alamo D, Moratalla R, Moreira PI, Morelli E, Moreno S, Moreno-Blas D, Moresi V, Morga B, Morgan AH, Morin F, Morishita H, Moritz OL, Moriyama M, Moriyasu Y, Morleo M, Morselli E, Moruno-Manchon JF, Moscat J, Mostowy S, Motori E, Moura AF, Moustaid-Moussa N, Mrakovcic M, Mucino-Hernandez G, Mukherjee A, Mukhopadhyay S, Mulcahy Levy JM, Mulero V, Muller S, Munch C, Munjal A, Munoz-Canoves P, Munoz-Galdeano T, Munz C, Murakawa T, Muratori C, Murphy BM, Murphy JP, Murthy A, Myohanen TT, Mysorekar IU, Mytych J, Nabavi SM, Nabissi M, Nagy P, Nah J, Nahimana A, Nakagawa I, Nakamura K, Nakatogawa H, Nandi SS, Nanjundan M, Nanni M, Napolitano G, Nardacci R, Narita M, Nassif M, Nathan I, Natsumeda M, Naude RJ, Naumann C, Naveiras O, Navid F, Nawrocki ST, Nazarko TY, Nazio F, Negoita F, Neill T, Neisch AL, Neri LM, Netea MG, Neubert P, Neufeld TP, Neumann D, Neutzner A, Newton PT, Ney PA, Nezis IP, Ng CCW, Ng TB, Nguyen HTT, Nguyen LT, Ni HM, Ni Cheallaigh C, Ni Z, Nicolao MC, Nicoli F, Nieto-Diaz M, Nilsson P, Ning S, Niranjan R, Nishimune H, Niso-Santano M, Nixon RA, Nobili A, Nobrega C, Noda T, Nogueira-Recalde U, Nolan TM, Nombela I, Novak I, Novoa B, Nozawa T, Nukina N, Nussbaum-Krammer C, Nylandsted J, O’Donovan TR, O’Leary SM, O’Rourke EJ, O’Sullivan MP, O’Sullivan TE, Oddo S, Oehme I, Ogawa M, Ogier-Denis E, Ogmundsdottir MH, Ogretmen B, Oh GT, Oh SH, Oh YJ, Ohama T, Ohashi Y, Ohmuraya M, Oikonomou V, Ojha R, Okamoto K, Okazawa H, Oku M, Olivan S, Oliveira JMA, Ollmann M, Olzmann JA, Omari S, Omary MB, Onal G, Ondrej M, Ong SB, Ong SG, Onnis A, Orellana JA, Orellana-Munoz S, Ortega-Villaizan MDM, Ortiz-Gonzalez XR, Ortona E, Osiewacz HD, Osman AK, Osta R, Otegui MS, Otsu K, Ott C, Ottobrini L, Ou JJ, Outeiro TF, Oynebraten I, Ozturk M, Pages G, Pahari S, Pajares M, Pajvani UB, Pal R, Paladino S, Pallet N, Palmieri M, Palmisano G, Palumbo C, Pampaloni F, Pan L, Pan Q, Pan W, Pan X, Panasyuk G, Pandey R, Pandey UB, Pandya V, Paneni F, Pang SY, Panzarini E, Papademetrio DL, Papaleo E, Papinski D, Papp D, Park EC, Park HT, Park JM, Park JI, Park JT, Park J, Park SC, Park SY, Parola AH, Parys JB, Pasquier A, Pasquier B, Passos JF, Pastore N, Patel HH, Patschan D, Pattingre S, Pedraza-Alva G, Pedraza-Chaverri J, Pedrozo Z, Pei G, Pei J, Peled-Zehavi H, Pellegrini JM, Pelletier J, Penalva MA, Peng D, Peng Y, Penna F, Pennuto M, Pentimalli F, Pereira CM, Pereira GJS, Pereira LC, Pereira de Almeida L, Perera ND, Perez-Lara A, Perez-Oliva AB, Perez-Perez ME, Periyasamy P, Perl A, Perrotta C, Perrotta I, Pestell RG, Petersen M, Petrache I, Petrovski G, Pfirrmann T, Pfister AS, Philips JA, Pi H, Picca A, Pickrell AM, Picot S, Pierantoni GM, Pierdominici M, Pierre P, Pierrefite-Carle V, Pierzynowska K, Pietrocola F, Pietruczuk M, Pignata C, Pimentel-Muinos FX, Pinar M, Pinheiro RO, Pinkas-Kramarski R, Pinton P, Pircs K, Piya S, Pizzo P, Plantinga TS, Platta HW, Plaza-Zabala A, Plomann M, Plotnikov EY, Plun-Favreau H, Pluta R, Pocock R, Poggeler S, Pohl C, Poirot M, Poletti A, Ponpuak M, Popelka H, Popova B, Porta H, Porte Alcon S, Portilla-Fernandez E, Post M, Potts MB, Poulton J, Powers T, Prahlad V, Prajsnar TK, Pratico D, Prencipe R, Priault M, Proikas-Cezanne T, Promponas VJ, Proud CG, Puertollano R, Puglielli L, Pulinilkunnil T, Puri D, Puri R, Puyal J, Qi X, Qi Y, Qian W, Qiang L, Qiu Y, Quadrilatero J, Quarleri J, Raben N, Rabinowich H, Ragona D, Ragusa MJ, Rahimi N, Rahmati M, Raia V, Raimundo N, Rajasekaran NS, Ramachandra Rao S, Rami A, Ramirez-Pardo I, Ramsden DB, Randow F, Rangarajan PN, Ranieri D, Rao H, Rao L, Rao R, Rathore S, Ratnayaka JA, Ratovitski EA, Ravanan P, Ravegnini G, Ray SK, Razani B, Rebecca V, Reggiori F, Regnier-Vigouroux A, Reichert AS, Reigada D, Reiling JH, Rein T, Reipert S, Rekha RS, Ren H, Ren J, Ren W, Renault T, Renga G, Reue K, Rewitz K, de Andrade R, Ramos B, Riazuddin SA, Ribeiro-Rodrigues TM, Ricci JE, Ricci R, Riccio V, Richardson DR, Rikihisa Y, Risbud MV, Risueno RM, Ritis K, Rizza S, Rizzuto R, Roberts HC, Roberts LD, Robinson KJ, Roccheri MC, Rocchi S, Rodney GG, Rodrigues T, Rodrigues Silva VR, Rodriguez A, Rodriguez-Barrueco R, Rodriguez-Henche N, Rodriguez-Rocha H, Roelofs J, Rogers RS, Rogov VV, Rojo AI, Rolka K, Romanello V, Romani L, Romano A, Romano PS, Romeo-Guitart D, Romero LC, Romero M, Roney JC, Rongo C, Roperto S, Rosenfeldt MT, Rosenstiel P, Rosenwald AG, Roth KA, Roth L, Roth S, Rouschop KMA, Roussel BD, Roux S, Rovere-Querini P, Roy A, Rozieres A, Ruano D, Rubinsztein DC, Rubtsova MP, Ruckdeschel K, Ruckenstuhl C, Rudolf E, Rudolf R, Ruggieri A, Ruparelia AA, Rusmini P, Russell RR, Russo GL, Russo M, Russo R, Ryabaya OO, Ryan KM, Ryu KY, Sabater-Arcis M, Sachdev U, Sacher M, Sachse C, Sadhu A, Sadoshima J, Safren N, Saftig P, Sagona AP, Sahay G, Sahebkar A, Sahin M, Sahin O, Sahni S, Saito N, Saito S, Saito T, Sakai R, Sakai Y, Sakamaki JI, Saksela K, Salazar G, Salazar-Degracia A, Salekdeh GH, Saluja AK, Sampaio-Marques B, Sanchez MC, Sanchez-Alcazar JA, Sanchez-Vera V, Sancho-Shimizu V, Sanderson JT, Sandri M, Santaguida S, Santambrogio L, Santana MM, Santoni G, Sanz A, Sanz P, Saran S, Sardiello M, Sargeant TJ, Sarin A, Sarkar C, Sarkar S, Sarrias MR, Sarkar S, Sarmah DT, Sarparanta J, Sathyanarayan A, Sathyanarayanan R, Scaglione KM, Scatozza F, Schaefer L, Schafer ZT, Schaible UE, Schapira AHV, Scharl M, Schatzl HM, Schein CH, Scheper W, Scheuring D, Schiaffino MV, Schiappacassi M, Schindl R, Schlattner U, Schmidt O, Schmitt R, Schmidt SD, Schmitz I, Schmukler E, Schneider A, Schneider BE, Schober R, Schoijet AC, Schott MB, Schramm M, Schroder B, Schuh K, Schuller C, Schulze RJ, Schurmanns L, Schwamborn JC, Schwarten M, Scialo F, Sciarretta S, Scott MJ, Scotto KW, Scovassi AI, Scrima A, Scrivo A, Sebastian D, Sebti S, Sedej S, Segatori L, Segev N, Seglen PO, Seiliez I, Seki E, Selleck SB, Sellke FW, Selsby JT, Sendtner M, Senturk S, Seranova E, Sergi C, Serra-Moreno R, Sesaki H, Settembre C, Setty SRG, Sgarbi G, Sha O, Shacka JJ, Shah JA, Shang D, Shao C, Shao F, Sharbati S, Sharkey LM, Sharma D, Sharma G, Sharma K, Sharma P, Sharma S, Shen HM, Shen H, Shen J, Shen M, Shen W, Shen Z, Sheng R, Sheng Z, Sheng ZH, Shi J, Shi X, Shi YH, Shiba-Fukushima K, Shieh JJ, Shimada Y, Shimizu S, Shimozawa M, Shintani T, Shoemaker CJ, Shojaei S, Shoji I, Shravage BV, Shridhar V, Shu CW, Shu HB, Shui K, Shukla AK, Shutt TE, Sica V, Siddiqui A, Sierra A, Sierra-Torre V, Signorelli S, Sil P, Silva BJA, Silva JD, Silva-Pavez E, Silvente-Poirot S, Simmonds RE, Simon AK, Simon HU, Simons M, Singh A, Singh LP, Singh R, Singh SV, Singh SK, Singh SB, Singh S, Singh SP, Sinha D, Sinha RA, Sinha S, Sirko A, Sirohi K, Sivridis EL, Skendros P, Skirycz A, Slaninova I, Smaili SS, Smertenko A, Smith MD, Soenen SJ, Sohn EJ, Sok SPM, Solaini G, Soldati T, Soleimanpour SA, Soler RM, Solovchenko A, Somarelli JA, Sonawane A, Song F, Song HK, Song JX, Song K, Song Z, Soria LR, Sorice M, Soukas AA, Soukup SF, Sousa D, Sousa N, Spagnuolo PA, Spector SA, Srinivas Bharath MM, St Clair D, Stagni V, Staiano L, Stalnecker CA, Stankov MV, Stathopulos PB, Stefan K, Stefan SM, Stefanis L, Steffan JS, Steinkasserer A, Stenmark H, Sterneckert J, Stevens C, Stoka V, Storch S, Stork B, Strappazzon F, Strohecker AM, Stupack DG, Su H, Su LY, Su L, Suarez-Fontes AM, Subauste CS, Subbian S, Subirada PV, Sudhandiran G, Sue CM, Sui X, Summers C, Sun G, Sun J, Sun K, Sun MX, Sun Q, Sun Y, Sun Z, Sunahara KKS, Sundberg E, Susztak K, Sutovsky P, Suzuki H, Sweeney G, Symons JD, Sze SCW, Szewczyk NJ, Tabecka-Lonczynska A, Tabolacci C, Tacke F, Taegtmeyer H, Tafani M, Tagaya M, Tai H, Tait SWG, Takahashi Y, Takats S, Talwar P, Tam C, Tam SY, Tampellini D, Tamura A, Tan CT, Tan EK, Tan YQ, Tanaka M, Tanaka M, Tang D, Tang J, Tang TS, Tanida I, Tao Z, Taouis M, Tatenhorst L, Tavernarakis N, Taylor A, Taylor GA, Taylor JM, Tchetina E, Tee AR, Tegeder I, Teis D, Teixeira N, Teixeira-Clerc F, Tekirdag KA, Tencomnao T, Tenreiro S, Tepikin AV, Testillano PS, Tettamanti G, Tharaux PL, Thedieck K, Thekkinghat AA, Thellung S, Thinwa JW, Thirumalaikumar VP, Thomas SM, Thomes PG, Thorburn A, Thukral L, Thum T, Thumm M, Tian L, Tichy A, Till A, Timmerman V, Titorenko VI, Todi SV, Todorova K, Toivonen JM, Tomaipitinca L, Tomar D, Tomas-Zapico C, Tomic S, Tong BC, Tong C, Tong X, Tooze SA, Torgersen ML, Torii S, Torres-Lopez L, Torriglia A, Towers CG, Towns R, Toyokuni S, Trajkovic V, Tramontano D, Tran QG, Travassos LH, Trelford CB, Tremel S, Trougakos IP, Tsao BP, Tschan MP, Tse HF, Tse TF, Tsugawa H, Tsvetkov AS, Tumbarello DA, Tumtas Y, Tunon MJ, Turcotte S, Turk B, Turk V, Turner BJ, Tuxworth RI, Tyler JK, Tyutereva EV, Uchiyama Y, Ugun-Klusek A, Uhlig HH, Ulamek-Koziol M, Ulasov IV, Umekawa M, Ungermann C, Unno R, Urbe S, Uribe-Carretero E, Ustun S, Uversky VN, Vaccari T, Vaccaro MI, Vahsen BF, Vakifahmetoglu-Norberg H, Valdor R, Valente MJ, Valko A, Vallee RB, Valverde AM, Van den Berghe G, van der Veen S, Van Kaer L, van Loosdregt J, van Wijk SJL, Vandenberghe W, Vanhorebeek I, Vannier-Santos MA, Vannini N, Vanrell MC, Vantaggiato C, Varano G, Varela-Nieto I, Varga M, Vasconcelos MH, Vats S, Vavvas DG, Vega-Naredo I, Vega-Rubin-de-Celis S, Velasco G, Velazquez AP, Vellai T, Vellenga E, Velotti F, Verdier M, Verginis P, Vergne I, Verkade P, Verma M, Verstreken P, Vervliet T, Vervoorts J, Vessoni AT, Victor VM, Vidal M, Vidoni C, Vieira OV, Vierstra RD, Vigano S, Vihinen H, Vijayan V, Vila M, Vilar M, Villalba JM, Villalobo A, Villarejo-Zori B, Villarroya F, Villarroya J, Vincent O, Vindis C, Viret C, Viscomi MT, Visnjic D, Vitale I, Vocadlo DJ, Voitsekhovskaja OV, Volonte C, Volta M, Vomero M, Von Haefen C, Vooijs MA, Voos W, Vucicevic L, Wade-Martins R, Waguri S, Waite KA, Wakatsuki S, Walker DW, Walker MJ, Walker SA, Walter J, Wandosell FG, Wang B, Wang CY, Wang C, Wang C, Wang C, Wang CY, Wang D, Wang F, Wang F, Wang F, Wang G, Wang H, Wang H, Wang H, Wang HG, Wang J, Wang J, Wang J, Wang J, Wang K, Wang L, Wang L, Wang MH, Wang M, Wang N, Wang P, Wang P, Wang P, Wang P, Wang QJ, Wang Q, Wang QK, Wang QA, Wang WT, Wang W, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang YY, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Warnes G, Warnsmann V, Watada H, Watanabe E, Watchon M, Wawrzynska A, Weaver TE, Wegrzyn G, Wehman AM, Wei H, Wei L, Wei T, Wei Y, Weiergraber OH, Weihl CC, Weindl G, Weiskirchen R, Wells A, Wen RH, Wen X, Werner A, Weykopf B, Wheatley SP, Whitton JL, Whitworth AJ, Wiktorska K, Wildenberg ME, Wileman T, Wilkinson S, Willbold D, Williams B, Williams RSB, Williams RL, Williamson PR, Wilson RA, Winner B, Winsor NJ, Witkin SS, Wodrich H, Woehlbier U, Wollert T, Wong E, Wong JH, Wong RW, Wong VKW, Wong WW, Wu AG, Wu C, Wu J, Wu J, Wu KK, Wu M, Wu SY, Wu S, Wu SY, Wu S, Wu WKK, Wu X, Wu X, Wu YW, Wu Y, Xavier RJ, Xia H, Xia L, Xia Z, Xiang G, Xiang J, Xiang M, Xiang W, Xiao B, Xiao G, Xiao H, Xiao HT, Xiao J, Xiao L, Xiao S, Xiao Y, Xie B, Xie CM, Xie M, Xie Y, Xie Z, Xie Z, Xilouri M, Xu C, Xu E, Xu H, Xu J, Xu J, Xu L, Xu WW, Xu X, Xue Y, Yakhine-Diop SMS, Yamaguchi M, Yamaguchi O, Yamamoto A, Yamashina S, Yan S, Yan SJ, Yan Z, Yanagi Y, Yang C, Yang DS, Yang H, Yang HT, Yang H, Yang JM, Yang J, Yang J, Yang L, Yang L, Yang M, Yang PM, Yang Q, Yang S, Yang S, Yang SF, Yang W, Yang WY, Yang X, Yang X, Yang Y, Yang Y, Yao H, Yao S, Yao X, Yao YG, Yao YM, Yasui T, Yazdankhah M, Yen PM, Yi C, Yin XM, Yin Y, Yin Z, Yin Z, Ying M, Ying Z, Yip CK, Yiu SPT, Yoo YH, Yoshida K, Yoshii SR, Yoshimori T, Yousefi B, Yu B, Yu H, Yu J, Yu J, Yu L, Yu ML, Yu SW, Yu VC, Yu WH, Yu Z, Yu Z, Yuan J, Yuan LQ, Yuan S, Yuan SF, Yuan Y, Yuan Z, Yue J, Yue Z, Yun J, Yung RL, Zacks DN, Zaffagnini G, Zambelli VO, Zanella I, Zang QS, Zanivan S, Zappavigna S, Zaragoza P, Zarbalis KS, Zarebkohan A, Zarrouk A, Zeitlin SO, Zeng J, Zeng JD, Zerovnik E, Zhan L, Zhang B, Zhang DD, Zhang H, Zhang H, Zhang H, Zhang H, Zhang H, Zhang H, Zhang H, Zhang HL, Zhang J, Zhang J, Zhang JP, Zhang KYB, Zhang LW, Zhang L, Zhang L, Zhang L, Zhang L, Zhang M, Zhang P, Zhang S, Zhang W, Zhang X, Zhang XW, Zhang X, Zhang X, Zhang X, Zhang X, Zhang XD, Zhang Y, Zhang Y, Zhang Y, Zhang YD, Zhang Y, Zhang YY, Zhang Y, Zhang Z, Zhang Z, Zhang Z, Zhang Z, Zhang Z, Zhang Z, Zhao H, Zhao L, Zhao S, Zhao T, Zhao XF, Zhao Y, Zhao Y, Zhao Y, Zhao Y, Zheng G, Zheng K, Zheng L, Zheng S, Zheng XL, Zheng Y, Zheng ZG, Zhivotovsky B, Zhong Q, Zhou A, Zhou B, Zhou C, Zhou G, Zhou H, Zhou H, Zhou H, Zhou J, Zhou J, Zhou J, Zhou J, Zhou K, Zhou R, Zhou XJ, Zhou Y, Zhou Y, Zhou Y, Zhou ZY, Zhou Z, Zhu B, Zhu C, Zhu GQ, Zhu H, Zhu H, Zhu H, Zhu WG, Zhu Y, Zhu Y, Zhuang H, Zhuang X, Zientara-Rytter K, Zimmermann CM, Ziviani E, Zoladek T, Zong WX, Zorov DB, Zorzano A, Zou W, Zou Z, Zou Z, Zuryn S, Zwerschke W, Brand-Saberi B, Dong XC, Kenchappa CS, Li Z, Lin Y, Oshima S, Rong Y, Sluimer JC, Stallings CL, Tong CK (2021a) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17(1):1–382. https://doi.org/10.1080/15548627.2020.1797280

    Article  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo MI, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen EL, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jaattela M, Johansen T, Juhasz G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez-Otin C, Macleod KF, Madeo F, Martinez J, Melendez A, Mizushima N, Munz C, Penninger JM, Perera RM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Sadoshima J, Santambrogio L, Scorrano L, Simon HU, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F (2021b) Autophagy in major human diseases. EMBO J 40(19):e108863. https://doi.org/10.15252/embj.2021108863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontar S, Imrichova D, Bertova A, Mackova K, Poturnayova A, Sulova Z, Breier A (2020) Cell Death effects induced by sulforaphane and allyl isothiocyanate on P-glycoprotein positive and negative variants in L1210 cells. Molecules. https://doi.org/10.3390/molecules25092093

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11(6):867–880. https://doi.org/10.1080/15548627.2015.1034410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Lee SH (2017) Pro-oxidant activity of sulforaphane and cisplatin potentiates apoptosis and simultaneously promotes autophagy in malignant mesothelioma cells. Mol Med Rep 16(2):2133–2141. https://doi.org/10.3892/mmr.2017.6789

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Moon MH, Jeong JK, Park YG, Lee YJ, Seol JW, Park SY (2012) Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway. Biochem Biophys Res Commun 426(4):492–497. https://doi.org/10.1016/j.bbrc.2012.08.107

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Song G, Bae H (2023) Glucotropaeolin promotes apoptosis by calcium dysregulation and attenuates cell migration with FOXM1 suppression in pancreatic. Cancer Cells Antioxid 12(2):257. https://doi.org/10.3390/antiox12020257

    Article  CAS  Google Scholar 

  • Li J, Frederick AM, Jin Y, Guo C, Xiao H, Wood RJ, Liu Z (2019) The prevention of a high dose of vitamin D or its combination with sulforaphane on intestinal inflammation and tumorigenesis in Apc(1638N) mice fed a high-fat diet. Mol Nutr Food Res 63(4):e1800824. https://doi.org/10.1002/mnfr.201800824

    Article  CAS  PubMed  Google Scholar 

  • Li D, Shao R, Wang N, Zhou N, Du K, Shi J, Wang Y, Zhao Z, Ye X, Zhang X, Xu H (2021a) Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy 17(4):872–887. https://doi.org/10.1080/15548627.2020.1739442

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cui J, Jia J (2021b) The activation of procarcinogens by CYP1A1/1B1 and related chemo-preventive agents: a review. Curr Cancer Drug Targets 21(1):21–54. https://doi.org/10.2174/1568009620666201006143419

    Article  CAS  PubMed  Google Scholar 

  • Li L, Chen H, Chen X, Chen S, Gu H (2022) Trehalose protects keratinocytes against ultraviolet b radiation by activating autophagy via regulating TIMP3 and ATG9A. Oxid Med Cell Longev 2022:9366494. https://doi.org/10.1155/2022/9366494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JF, Tsai TF, Liao PC, Lin YH, Lin YC, Chen HE, Chou KY, Hwang TI (2013) Benzyl isothiocyanate induces protective autophagy in human prostate cancer cells via inhibition of mTOR signaling. Carcinogenesis 34(2):406–414. https://doi.org/10.1093/carcin/bgs359

    Article  CAS  PubMed  Google Scholar 

  • Lin JF, Tsai TF, Yang SC, Lin YC, Chen HE, Chou KY, Hwang TI (2017) Benzyl isothiocyanate induces reactive oxygen species-initiated autophagy and apoptosis in human prostate cancer cells. Oncotarget 8(12):20220–20234. https://doi.org/10.18632/oncotarget.15643

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Hettinger CL, Zhang D, Rezvani K, Wang X, Wang H (2014) Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington’s disease. J Neurochem 129(3):539–547. https://doi.org/10.1111/jnc.12647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Smith AJ, Ball SS, Bao Y, Bowater RP, Wang N, Michael Wormstone I (2017a) Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery. J Mol Med (berl) 95(5):553–564. https://doi.org/10.1007/s00109-016-1502-4

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Abe-Kanoh N, Liu Y, Zhu B, Munemasa S, Nakamura T, Murata Y, Nakamura Y (2017b) Inhibition of phosphatidylinositide 3-kinase impairs the benzyl isothiocyanate-induced accumulation of autophagic molecules and Nrf2 in human colon cancer cells. Biosci Biotechnol Biochem 81(11):2212–2215. https://doi.org/10.1080/09168451.2017.1374830

    Article  CAS  PubMed  Google Scholar 

  • Liu HJ, Wang L, Kang L, Du J, Li S, Cui HX (2018) Sulforaphane-N-acetyl-cysteine induces autophagy through activation of ERK1/2 in U87MG and U373MG cells. Cell Physiol Biochem 51(2):528–542. https://doi.org/10.1159/000495274

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Mao X, Ge L, Hou L, Le G, Gan F, Wen L, Huang K (2022) Phenethyl isothiocyanate as an anti-nutritional factor attenuates deoxynivalenol-induced IPEC-J2 cell injury through inhibiting ROS-mediated autophagy. Animal Nutrition 8:300–309. https://doi.org/10.1016/j.aninu.2021.09.013

    Article  CAS  PubMed  Google Scholar 

  • Lohning A, Kidachi Y, Kamiie K, Sasaki K, Ryoyama K, Yamaguchi H (2021) 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) from Wasabia japonica alleviates inflammatory bowel disease (IBD) by potential inhibition of glycogen synthase kinase 3 beta (GSK-3β). Eur J Med Chem 216:113250. https://doi.org/10.1016/j.ejmech.2021.113250

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Kroemer G (2021) Hallmarks of Health. Cell 184(1):33–63. https://doi.org/10.1016/j.cell.2020.11.034

    Article  CAS  PubMed  Google Scholar 

  • Lőrincz P, Juhász G (2020) Autophagosome-Lysosome Fusion. J Mol Biol 432(8):2462–2482. https://doi.org/10.1016/j.jmb.2019.10.028

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Baena MD, Tasset I, Obregón-Cano S, de Haro-Bailon A, Muñoz-Serrano A, Alonso-Moraga Á (2015) Antigenotoxicity and tumor growing inhibition by leafy brassica carinata and Sinigrin. Molecules 20(9):15748–15765. https://doi.org/10.3390/molecules200915748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zhang Y, Lou Y, Cui W, Miao L (2020) Sulforaphane suppresses obesity-related glomerulopathy-induced damage by enhancing autophagy via Nrf2. Life Sci 258:118153. https://doi.org/10.1016/j.lfs.2020.118153

    Article  CAS  PubMed  Google Scholar 

  • Luo T, Fu X, Liu Y, Ji Y, Shang Z (2021) Sulforaphane inhibits osteoclastogenesis via suppression of the autophagic pathway. Molecules 26(2):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv H, Zhen C, Liu J, Shang P (2020a) β-phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway. Oxid Med Cell Longev 2020:5021983. https://doi.org/10.1155/2020/5021983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv X, Meng G, Li W, Fan D, Wang X, Espinoza-Pinochet CA, Cespedes-Acuña CL (2020b) Sulforaphane and its antioxidative effects in broccoli seeds and sprouts of different cultivars. Food Chem 316:126216. https://doi.org/10.1016/j.foodchem.2020.126216

    Article  CAS  PubMed  Google Scholar 

  • Lv C, Zhang Y, Zou L, Sun J, Song X, Mao J, Wu Y (2021) Simultaneous Hydrolysis and Extraction Increased Erucin Yield from Broccoli Seeds. ACS Omega 6(9):6385–6392. https://doi.org/10.1021/acsomega.0c06319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Du D, Liu J, Guo L, Li Y, Chen A, Ye T (2020) Hydrogen sulphide promotes osteoclastogenesis by inhibiting autophagy through the PI3K/AKT/mTOR pathway. J Drug Target 28(2):176–185. https://doi.org/10.1080/1061186x.2019.1624969

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes-Novais S, Blecha J, Naraine R, Mikesova J, Abaffy P, Pecinova A, Milosevic M, Bohuslavova R, Prochazka J, Khan S, Novotna E, Sindelka R, Machan R, Dewerchin M, Vlcak E, Kalucka J, Stemberkova Hubackova S, Benda A, Goveia J, Mracek T, Barinka C, Carmeliet P, Neuzil J, Rohlenova K, Rohlena J (2022) Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy 18(10):2409–2426. https://doi.org/10.1080/15548627.2022.2038898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahn A, Castillo A (2021) Potential of sulforaphane as a natural immune system enhancer: a review. Molecules. https://doi.org/10.3390/molecules26030752

    Article  PubMed  PubMed Central  Google Scholar 

  • Martelli A, Citi V, Testai L, Brogi S, Calderone V (2020) Organic isothiocyanates as hydrogen sulfide donors. Antioxid Redox Signal 32(2):110–144. https://doi.org/10.1089/ars.2019.7888

    Article  CAS  PubMed  Google Scholar 

  • Masuda M, Yoshida-Shimizu R, Mori Y, Ohnishi K, Adachi Y, Sakai M, Kabutoya S, Ohminami H, Yamanaka-Okumura H, Yamamoto H, Miyazaki M, Taketani Y (2022) Sulforaphane induces lipophagy through the activation of AMPK-mTOR-ULK1 pathway signaling in adipocytes. J Nutr Biochem 106:109017. https://doi.org/10.1016/j.jnutbio.2022.109017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazumder A, Dwivedi A, du Plessis J (2016) Sinigrin and its therapeutic benefits. Molecules 21(4):416. https://doi.org/10.3390/molecules21040416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Z, Tan M, Azarakhsh N, Duan H, Ramaswamy HS, Bai W, Wang C (2023) Antibacterial activity and improvement of the oxidative stability of soybean oil by 4-hydroxybenzyl isothiocyanate from white mustard seeds. Curr Res Food Sci 7:100563. https://doi.org/10.1016/j.crfs.2023.100563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi L, Gan N, Chung FL (2009) Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery. Biochem Biophys Res Commun 388(2):456–462. https://doi.org/10.1016/j.bbrc.2009.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DR, Thorburn A (2021) Autophagy and organelle homeostasis in cancer. Dev Cell 56(7):906–918. https://doi.org/10.1016/j.devcel.2021.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse MA, Amin SG, Hecht SS, Chung FL (1989) Effects of aromatic isothiocyanates on tumorigenicity, O6-methylguanine formation, and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Cancer Res 49(11):2894–2897

    CAS  PubMed  Google Scholar 

  • Mulcahy Levy JM, Thorburn A (2020) Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ 27(3):843–857. https://doi.org/10.1038/s41418-019-0474-7

    Article  PubMed  Google Scholar 

  • Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64(16):5767–5774. https://doi.org/10.1158/0008-5472.Can-04-1326

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T (2009) A combination of indole-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 8(1):100. https://doi.org/10.1186/1476-4598-8-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naumann P, Fortunato F, Zentgraf H, Büchler MW, Herr I, Werner J (2011) Autophagy and cell death signaling following dietary sulforaphane act independently of each other and require oxidative stress in pancreatic cancer. Int J Oncol 39(1):101–109. https://doi.org/10.3892/ijo.2011.1025

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VPT, Stewart J, Lopez M, Ioannou I, Allais F (2020) Glucosinolates: natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules. https://doi.org/10.3390/molecules25194537

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishikawa T, Tsuno NH, Okaji Y, Shuno Y, Sasaki K, Hongo K, Sunami E, Kitayama J, Takahashi K, Nagawa H (2010a) Inhibition of autophagy potentiates sulforaphane-induced apoptosis in human colon cancer cells. Ann Surg Oncol 17(2):592–602. https://doi.org/10.1245/s10434-009-0696-x

    Article  PubMed  Google Scholar 

  • Nishikawa T, Tsuno NH, Okaji Y, Sunami E, Shuno Y, Sasaki K, Hongo K, Kaneko M, Hiyoshi M, Kawai K, Kitayama J, Takahashi K, Nagawa H (2010b) The inhibition of autophagy potentiates anti-angiogenic effects of sulforaphane by inducing apoptosis. Angiogenesis 13(3):227–238. https://doi.org/10.1007/s10456-010-9180-2

    Article  CAS  PubMed  Google Scholar 

  • Noorasyikin MA, Azizan EA, Teh PC, Farah Waheeda T, Siti Hajar MD, Long KC, Norlinah MI (2020) Oral trehalose maybe helpful for patients with spinocerebellar ataxia 3 and should be better evaluated. Parkinsonism Relat Disord 70:42–44. https://doi.org/10.1016/j.parkreldis.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Futakuchi M, Hirose M, Boonyaphiphat P, Mizoguchi Y, Miki T, Shirai T (1998) Stage and organ dependent effects of 1-O-hexyl-2,3,5-trimethylhydroquinone, ascorbic acid derivatives, n-heptadecane-8-10-dione and phenylethyl isothiocyanate in a rat multiorgan carcinogenesis model. Int J Cancer 76(6):851–856. https://doi.org/10.1002/(sici)1097-0215(19980610)76:6%3c851::aid-ijc14%3e3.0.co;2-5

    Article  CAS  PubMed  Google Scholar 

  • Olagnier D, Lababidi RR, Hadj SB, Sze A, Liu Y, Naidu SD, Ferrari M, Jiang Y, Chiang C, Beljanski V, Goulet ML, Knatko EV, Dinkova-Kostova AT, Hiscott J, Lin R (2017) Activation of Nrf2 signaling augments vesicular stomatitis virus oncolysis via autophagy-driven suppression of antiviral immunity. Mol Ther 25(8):1900–1916. https://doi.org/10.1016/j.ymthe.2017.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlik A, Wiczk A, Kaczyńska A, Antosiewicz J, Herman-Antosiewicz A (2013) Sulforaphane inhibits growth of phenotypically different breast cancer cells. Eur J Nutr 52(8):1949–1958. https://doi.org/10.1007/s00394-013-0499-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlik A, Słomińska-Wojewódzka M, Herman-Antosiewicz A (2016) Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants. Eur J Nutr 55(3):1165–1180. https://doi.org/10.1007/s00394-015-0930-1

    Article  CAS  PubMed  Google Scholar 

  • Pawlik A, Wała M, Hać A, Felczykowska A, Herman-Antosiewicz A (2017) Sulforaphene, an isothiocyanate present in radish plants, inhibits proliferation of human breast cancer cells. Phytomedicine 29:1–10. https://doi.org/10.1016/j.phymed.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  • Pei Y, Wu B, Cao Q, Wu L, Yang G (2011) Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells. Toxicol Appl Pharmacol 257(3):420–428. https://doi.org/10.1016/j.taap.2011.09.026

    Article  CAS  PubMed  Google Scholar 

  • Po WW, Choi WS, Khing TM, Lee JY, Lee JH, Bang JS, Min YS, Jeong JH, Sohn UD (2022) Benzyl isothiocyanate-induced cytotoxicity via the inhibition of autophagy and lysosomal function in AGS cells. Biomol Ther (seoul) 30(4):348–359. https://doi.org/10.4062/biomolther.2022.019

    Article  CAS  PubMed  Google Scholar 

  • Pocasap P, Weerapreeyakul N, Thumanu K (2018) Structures of isothiocyanates attributed to reactive oxygen species generation and microtubule depolymerization in HepG2 cells. Biomed Pharmacother 101:698–709. https://doi.org/10.1016/j.biopha.2018.02.132

    Article  CAS  PubMed  Google Scholar 

  • Powolny AA, Bommareddy A, Hahm ER, Normolle DP, Beumer JH, Nelson JB, Singh SV (2011) Chemopreventative potential of the cruciferous vegetable constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J Natl Cancer Inst 103(7):571–584. https://doi.org/10.1093/jnci/djr029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA (2022) Disaccharide trehalose in experimental therapies for neurodegenerative disorders: molecular targets and translational potential. Pharmacol Res 183:106373. https://doi.org/10.1016/j.phrs.2022.106373

    Article  CAS  PubMed  Google Scholar 

  • Qin H, King GJ, Borpatragohain P, Zou J (2023) Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. Plant Commun 4(4):100565. https://doi.org/10.1016/j.xplc.2023.100565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirante-Moya S, García-Ibañez P, Quirante-Moya F, Villaño D, Moreno DA (2020) The role of brassica bioactives on human health: are we studying it the right way? Molecules. https://doi.org/10.3390/molecules25071591

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendran P, Kidane AI, Yu TW, Dashwood WM, Bisson WH, Löhr CV, Ho E, Williams DE, Dashwood RH (2013) HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics 8(6):612–623. https://doi.org/10.4161/epi.24710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revelou P-K, Xagoraris M, Michail A, Kokotou MG, Constantinou-Kokotou V (2022) Development of a UPLC-Q-ToF-MS method for the determination of sulforaphane and iberin in cruciferous vegetables. Biol Life Sci Forum 12(1):24

    Google Scholar 

  • Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Gutiérrez-Ruíz SC, Hernández-Parra H, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chavez SA, Cortés H, Peña-Corona SI, Kiyekbayeva L, Ateşşahin DA, Goloshvili T, Leyva-Gómez G, Sharifi-Rad J (2023) 3,3’-Diindolylmethane and indole-3-carbinol: potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int 23(1):180. https://doi.org/10.1186/s12935-023-03031-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizwan D, Masoodi FA (2023) Brassica-derived isothiocyanates as anticancer therapeutic agents and their nanodelivery. Phytother Res. https://doi.org/10.1002/ptr.8042

    Article  PubMed  Google Scholar 

  • Rojas-Sanchez G, Cotzomi-Ortega I, Pazos-Salazar NG, Reyes-Leyva J, Maycotte P (2019) Autophagy and its relationship to epithelial to mesenchymal transition: when autophagy inhibition for cancer therapy turns counterproductive. Biology (basel). https://doi.org/10.3390/biology8040071

    Article  PubMed  Google Scholar 

  • Ruhaizat-Ooi I-H, Zainal-Abidin R-A, Ab Ghani NS, Afiqah-Aleng N, Bunawan H, Mohd-Assaad N, Mohamed-Hussein Z-A, Harun S (2022) Understanding the complex functional interplay between glucosinolates and cyanogenic glycosides in carica papaya. Agronomy 12(10):2508

    Article  CAS  Google Scholar 

  • Ruhee RT, Suzuki K (2020) The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: a review of a potential protective phytochemical. Antioxidants 9(6):521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schepici G, Bramanti P, Mazzon E (2020) Efficacy of sulforaphane in neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms21228637

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz LM (2021) Autophagic cell death during development – ancient and mysterious. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.656370

    Article  PubMed  PubMed Central  Google Scholar 

  • Sestili P, Fimognari C (2015) Cytotoxic and antitumor activity of sulforaphane: the role of reactive oxygen species. Biomed Res Int 2015:402386. https://doi.org/10.1155/2015/402386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao D, Shen W, Miao Y, Gao Z, Pan M, Wei Q, Yan Z, Zhao X, Ma B (2023) Sulforaphane prevents LPS-induced inflammation by regulating the Nrf2-mediated autophagy pathway in goat mammary epithelial cells and a mouse model of mastitis. J Anim Sci Biotechnol 14(1):61. https://doi.org/10.1186/s40104-023-00858-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SV, Kim SH, Sehrawat A, Arlotti JA, Hahm ER, Sakao K, Beumer JH, Jankowitz RC, Chandra-Kuntal K, Lee J, Powolny AA, Dhir R (2012) Biomarkers of phenethyl isothiocyanate-mediated mammary cancer chemoprevention in a clinically relevant mouse model. J Natl Cancer Inst 104(16):1228–1239. https://doi.org/10.1093/jnci/djs321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AA, Patil MP, Kang M-J, Niyonizigiye I, Kim G-D (2021) Biomedical application of Indole-3-carbinol: a mini-review. Phytochem Lett 41:49–54. https://doi.org/10.1016/j.phytol.2020.09.024

    Article  CAS  Google Scholar 

  • Soundararajan P, Kim JS (2018) Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules. https://doi.org/10.3390/molecules23112983

    Article  PubMed  PubMed Central  Google Scholar 

  • Stasiłojć G, Nagel A, Koszałka P, Bigda JJ (2019) Defective apoptosis of U937 cells induced by benzyl isothiocyanate (BITC). Acta Biochim Pol 66(4):401–407. https://doi.org/10.18388/abp.2019_2769

    Article  CAS  PubMed  Google Scholar 

  • Testai L, Montanaro R, Flori L, Pagnotta E, Vellecco V, Gorica E, Ugolini L, Righetti L, Brancaleone V, Bucci M, Piragine E, Martelli A, Di Cesare Mannelli L, Ghelardini C, Calderone V (2023) Persulfidation of mitoKv74 channels contributes to the cardioprotective effects of the H(2)S-donor Erucin against ischemia/reperfusion injury. Biochem Pharmacol 215:115728. https://doi.org/10.1016/j.bcp.2023.115728

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10(3):241–252. https://doi.org/10.1016/j.ccr.2006.08.009

    Article  CAS  PubMed  Google Scholar 

  • Treasure K, Harris J, Williamson G (2023) Exploring the anti-inflammatory activity of sulforaphane. Immunol Cell Biol 101(9):805–828. https://doi.org/10.1111/imcb.12686

    Article  CAS  PubMed  Google Scholar 

  • van der Horst D, Carter-Timofte ME, van Grevenynghe J, Laguette N, Dinkova-Kostova AT, Olagnier D (2022) Regulation of innate immunity by Nrf2. Curr Opin Immunol 78:102247. https://doi.org/10.1016/j.coi.2022.102247

    Article  CAS  PubMed  Google Scholar 

  • Vanduchova A, Anzenbacher P, Anzenbacherova E (2019) Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J Med Food 22(2):121–126. https://doi.org/10.1089/jmf.2018.0024

    Article  CAS  PubMed  Google Scholar 

  • Vyas AR, Hahm ER, Arlotti JA, Watkins S, Stolz DB, Desai D, Amin S, Singh SV (2013) Chemoprevention of prostate cancer by d, l-sulforaphane is augmented by pharmacological inhibition of autophagy. Cancer Res 73(19):5985–5995. https://doi.org/10.1158/0008-5472.Can-13-0755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LG, Beklemisheva A, Liu XM, Ferrari AC, Feng J, Chiao JW (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog 46(1):24–31. https://doi.org/10.1002/mc.20258

    Article  CAS  PubMed  Google Scholar 

  • Wang W, He Y, Yu G, Li B, Sexton DW, Wileman T, Roberts AA, Hamilton CJ, Liu R, Chao Y, Shan Y, Bao Y (2015) Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity. PLoS ONE 10(9):e0138771. https://doi.org/10.1371/journal.pone.0138771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang F, Wu S, Liu Z, Li T, Mao L, Zhang J, Li C, Liu C, Yang Y (2018a) Traditional herbal medicine-derived sulforaphene promotes mitophagic cell death in lymphoma cells through CRM1-mediated p62/SQSTM1 accumulation and AMPK activation. Chem Biol Interact 281:11–23. https://doi.org/10.1016/j.cbi.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang L, Cao L, Zhang Q, Song Q, Meng Z, Wu X, Xu K (2018b) Inhibition of autophagy potentiates the anti-metastasis effect of phenethyl isothiocyanate through JAK2/STAT3 pathway in lung cancer cells. Mol Carcinog 57(4):522–535. https://doi.org/10.1002/mc.22777

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mandal AK, Son YO, Pratheeshkumar P, Wise JTF, Wang L, Zhang Z, Shi X, Chen Z (2018c) Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol Appl Pharmacol 353:23–30. https://doi.org/10.1016/j.taap.2018.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu H, Dong N, Su X, Duan M, Wei Y, Wei J, Liu G, Peng Q, Zhao Y (2021) Sulforaphane induces S-phase arrest and apoptosis via p53-dependent manner in gastric cancer cells. Sci Rep 11(1):2504. https://doi.org/10.1038/s41598-021-81815-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson GW, Wickramasekara S, Fang Y, Palomera-Sanchez Z, Maier CS, Williams DE, Dashwood RH, Perez VI, Ho E (2015) Analysis of autophagic flux in response to sulforaphane in metastatic prostate cancer cells. Mol Nutr Food Res 59(10):1954–1961. https://doi.org/10.1002/mnfr.201500283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wattenberg LW (1977) Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J Natl Cancer Inst 58(2):395–398. https://doi.org/10.1093/jnci/58.2.395

    Article  CAS  PubMed  Google Scholar 

  • Wiczk A, Hofman D, Konopa G, Herman-Antosiewicz A (2012) Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells. Biochim Biophys Acta 1823(8):1295–1305. https://doi.org/10.1016/j.bbamcr.2012.05.020

    Article  CAS  PubMed  Google Scholar 

  • Williams DE (2021) Indoles derived from glucobrassicin: cancer chemoprevention by indole-3-carbinol and 3,3’-diindolylmethane. Front Nutr 8:734334. https://doi.org/10.3389/fnut.2021.734334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu KM, Liao HF, Chi CW, Kou YR, Chen YJ (2019) Wasabi compound 6-(Methylsulfinyl) hexyl isothiocyanate induces cell death with coexisting mitotic arrest and autophagy in human chronic myelogenous leukemia K562 cells. Biomolecules. https://doi.org/10.3390/biom9120774

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao D, Powolny AA, Antosiewicz J, Hahm ER, Bommareddy A, Zeng Y, Desai D, Amin S, Herman-Antosiewicz A, Singh SV (2009) Cellular responses to cancer chemopreventive agent D, L-sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen species. Pharm Res 26(7):1729–1738. https://doi.org/10.1007/s11095-009-9883-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao D, Powolny AA, Moura MB, Kelley EE, Bommareddy A, Kim SH, Hahm ER, Normolle D, Van Houten B, Singh SV (2010) Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 285(34):26558–26569. https://doi.org/10.1074/jbc.M109.063255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao D, Bommareddy A, Kim SH, Sehrawat A, Hahm ER, Singh SV (2012) Benzyl isothiocyanate causes FoxO1-mediated autophagic death in human breast cancer cells. PLoS ONE 7(3):e32597. https://doi.org/10.1371/journal.pone.0032597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue C, Pasolli HA, Piscopo I, Gros DJ, Liu C, Chen Y, Chiao JW (2014) Mitochondrial structure alteration in human prostate cancer cells upon initial interaction with a chemopreventive agent phenethyl isothiocyanate. Cancer Cell Int 14(1):30. https://doi.org/10.1186/1475-2867-14-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahiya YI, Hadi NR, Abu Raghif A, Qassam H, Al Habooby NGS (2023) Role of Iberin as an anti-apoptotic agent on renal ischemia-reperfusion injury in rats. J Med Life 16(6):915–919. https://doi.org/10.25122/jml-2022-0281

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Kidachi Y, Kamiie K, Noshita T, Umetsu H, Fuke Y, Ryoyama K (2013) Utilization of 6-(methylsulfinyl)hexyl isothiocyanate for sensitization of tumor cells to antitumor agents in combination therapies. Biochem Pharmacol 86(4):458–468. https://doi.org/10.1016/j.bcp.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  • Yamamuro T, Kawabata T, Fukuhara A, Saita S, Nakamura S, Takeshita H, Fujiwara M, Enokidani Y, Yoshida G, Tabata K, Hamasaki M, Kuma A, Yamamoto K, Shimomura I, Yoshimori T (2020) Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nat Commun 11(1):4150. https://doi.org/10.1038/s41467-020-17985-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Zhou Y, Li J, Zheng Z, Hu Y, Li L, Wu W (2021) Sulforaphane downregulated fatty acid synthase and inhibited microtubule-mediated mitophagy leading to apoptosis. Cell Death Dis 12(10):917. https://doi.org/10.1038/s41419-021-04198-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Wang F, Liu Y, Wang S, Li X, Huang Y, Xia Y, Cao C (2018) Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sci 213:149–157. https://doi.org/10.1016/j.lfs.2018.10.034

    Article  CAS  PubMed  Google Scholar 

  • Yang PM, Cheng KC, Huang JY, Wang SY, Lin YN, Tseng YT, Hsieh CW, Wung BS (2021) Sulforaphane inhibits blue light-induced inflammation and apoptosis by upregulating the SIRT1/PGC-1α/Nrf2 pathway and autophagy in retinal pigment epithelial cells. Toxicol Appl Pharmacol 421:115545. https://doi.org/10.1016/j.taap.2021.115545

    Article  CAS  PubMed  Google Scholar 

  • Yap KH, Azmin S, Makpol S, Damanhuri HA, Mustapha M, Hamzah JC, Ibrahim NM (2023) Profiling neuroprotective potential of trehalose in animal models of neurodegenerative diseases: a systematic review. Neural Regen Res 18(6):1179–1185. https://doi.org/10.4103/1673-5374.360164

    Article  CAS  PubMed  Google Scholar 

  • Yuan JM, Stepanov I, Murphy SE, Wang R, Allen S, Jensen J, Strayer L, Adams-Haduch J, Upadhyaya P, Le C, Kurzer MS, Nelson HH, Yu MC, Hatsukami D, Hecht SS (2016) Clinical trial of 2-phenethyl isothiocyanate as an inhibitor of metabolic activation of a tobacco-specific lung carcinogen in cigarette smokers. Cancer Prev Res (phila) 9(5):396–405. https://doi.org/10.1158/1940-6207.Capr-15-0380

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang S, Zhou S, Yan X, Wang Y, Chen J, Mellen N, Kong M, Gu J, Tan Y, Zheng Y, Cai L (2014) Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol 77:42–52. https://doi.org/10.1016/j.yjmcc.2014.09.022

    Article  CAS  PubMed  Google Scholar 

  • Zhang HQ, Chen SY, Wang AS, Yao AJ, Fu JF, Zhao JS, Chen F, Zou ZQ, Zhang XH, Shan YJ, Bao YP (2016) Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Mol Nutr Food Res 60(10):2185–2197. https://doi.org/10.1002/mnfr.201500915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QC, Pan ZH, Liu BN, Meng ZW, Wu X, Zhou QH, Xu K (2017) Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism. Acta Pharmacol Sin 38(4):539–550. https://doi.org/10.1038/aps.2016.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Garzotto M, Davis EW 2nd, Mori M, Stoller WA, Farris PE, Wong CP, Beaver LM, Thomas GV, Williams DE, Dashwood RH, Hendrix DA, Ho E, Shannon J (2020) Sulforaphane bioavailability and chemopreventive activity in men presenting for biopsy of the prostate gland: a randomized controlled trial. Nutr Cancer 72(1):74–87. https://doi.org/10.1080/01635581.2019.1619783

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen Y, Li H, Chen B, Liu Z, Wu G, Li C, Li R, Cao Y, Zhou J, Shen M, Liu H, Tao J (2022) Sulforaphane acts through NFE2L2 to prevent hypoxia-induced apoptosis in porcine granulosa cells via activating antioxidant defenses and mitophagy. J Agric Food Chem 70(26):8097–8110. https://doi.org/10.1021/acs.jafc.2c01978

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, Huai C, Shen L, Zhang N, He L, Qin S (2021) Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci 22(23):12808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao A, Jeffery EH, Miller MJ (2022) Is bitterness only a taste? The expanding area of health benefits of brassica vegetables and potential for bitter taste receptors to support health benefits. Nutrients. https://doi.org/10.3390/nu14071434

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng K, Ma J, Wang Y, He Z, Deng K (2020) Sulforaphane inhibits autophagy and induces exosome-mediated paracrine senescence via regulating mTOR/TFE3. Mol Nutr Food Res 64(14):e1901231. https://doi.org/10.1002/mnfr.201901231

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Chen B, Wang X, Wu L, Yang Y, Cheng X, Hu Z, Cai X, Yang J, Sun X, Lu W, Yan H, Chen J, Ye J, Shen J, Cao P (2016) Sulforaphane protects against rotenone-induced neurotoxicity in vivo: Involvement of the mTOR, Nrf2, and autophagy pathways. Sci Rep 6:32206. https://doi.org/10.1038/srep32206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Wang Y, Wu S, Yan Y, Hu Y, Zheng Z, Li J, Wu W (2020) Sulforaphane-cysteine inhibited migration and invasion via enhancing mitophagosome fusion to lysosome in human glioblastoma cells. Cell Death Dis 11(9):819. https://doi.org/10.1038/s41419-020-03024-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Fundación Seneca—Murcia Regional Agency for Science and Technology (CARM), Project Reference N# 20855/PI/18; Paola Maycotte would like to also thank Fundación Séneca- Murcia Regional Agency for Science and Technology for the “Subprograma de Atracción de Investigadores Visitantes a la Región de Murcia” Grant N# 21756/IV/22. This research is part of the collaborative work under the "Convenio General de Colaboración Agencia Estatal Consejo Superior de Investigaciones Científicas, M.P. - Instituto Mexicano del Seguro Social ID (265355)".

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola Maycotte or Diego A. Moreno.

Ethics declarations

Conflict of interest

The authors declare they have no financial or non-financial interests directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maycotte, P., Illanes, M. & Moreno, D.A. Glucosinolates, isothiocyanates, and their role in the regulation of autophagy and cellular function. Phytochem Rev (2024). https://doi.org/10.1007/s11101-024-09944-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11101-024-09944-w

Keywords

Navigation