Skip to main content

Advertisement

Log in

Flavonoid compounds as reversal agents of the P-glycoprotein-mediated multidrug resistance: biology, chemistry and pharmacology

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Multidrug resistance (MDR) represents one of the major problems in pharmacotherapy of important diseases (e.g., cancer, epilepsy). Although many factors may contribute to the development of MDR phenotype, the increased expression and/or functional activity of P-glycoprotein (P-gp; active drug efflux transporter) across the cell membrane has been recognized as the main one. Therefore, a great attention has been given to the search of P-gp inhibitors as therapeutic agents to reverse the MDR mediated by P-gp. Since the chemical entities identified over the last three decades as potential P-gp inhibitors did not show suitable pharmacological properties, more recently herbal components, such as flavonoid compounds, have gained a great interest as safe P-gp inhibitors. The interest in flavonoids as P-gp inhibitors is increasing due to their potential favourable characteristics, including selectivity and non-cytotoxic effects. Flavonoids integrate the third-generation non-pharmaceutical category of P-gp inhibitors, and some of them exhibited effects comparable to those of the classic P-gp inhibitors. In fact, some flavonoids found in foods and beverages of herbal origin appear to be quite promising to inhibit the P-gp–mediated drug efflux, indicating their potential value to enhance the systemic/cellular bioavailability of P-gp drug substrates when administrated in co-therapy. This review paper summarizes the current evidence of P-gp inhibitory effects produced by flavonoids, taking into account studies performed in cell-based in vitro models, in vivo animal models and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABC:

Adenosine triphosphate (ATP)-binding cassette

AUC:

Area under the concentration–time curve

BCRP:

Breast cancer resistance protein

Clt :

Total body clearance

C max :

Peak concentration

CNS:

Central nervous system

CYP:

Cytochrome P450

IV:

Intravenous

MDR:

Multidrug resistance

MRP:

Multidrug resistance-associated protein

NBD:

Nucleotide-binding domain

P-gp:

P-glycoprotein

TMs:

Transmembrane α-helix segments

TMD:

Transmembrane domain

References

  • Ali H-A, Chowdhury AKA, Rahman AKM et al (2008) Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo-2 colon cancer cell line in vitro. Phytother Res 22:1684–1687

    CAS  PubMed  Google Scholar 

  • Alonso-Castro AJ, Ortiz-Sánchez E, García-Regalado A et al (2013) Kaempferitrin induces apoptosis via intrinsic pathway in HeLa cells and exerts antitumor effects. J Ethnopharmacol 145:476–489

    CAS  PubMed  Google Scholar 

  • Alvarez AI, Real R, Pérez M et al (2010) Modulation of the activity of ABC transporters (P-Glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci 99:598–617

    CAS  PubMed  Google Scholar 

  • Amin ML (2013) P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7:27–34

    PubMed Central  PubMed  Google Scholar 

  • An G, Morris ME (2010) Effects of the isoflavonoid biochanin A on the transport of mitoxantrone in vitro and in vivo. Biopharm Drug Dispos 31:340–350

    CAS  PubMed  Google Scholar 

  • Aszalos A (2008) Role of ATP-binding cassette (ABC) transporters in interactions between natural products and drugs. Curr Drug Metab 9:1010–1018

    CAS  PubMed  Google Scholar 

  • Badhan R, Penny J (2006) In silico modelling of the interaction of flavonoids with human P-glycoprotein nucleotide-binding domain. Eur J Med Chem 41:285–295

    CAS  PubMed  Google Scholar 

  • Balayssac D, Authier N, Cayre A, Coudore F (2005) Does inhibition of P-glycoprotein lead to drug–drug interactions? Toxicol Lett 156:319–329

    CAS  PubMed  Google Scholar 

  • Bansal T, Awasthi A, Jaggi M et al (2008) Pre-clinical evidence for altered absorption and biliary excretion of irinotecan (CPT-11) in combination with quercetin: possible contribution of P-glycoprotein. Life Sci 83:250–259

    CAS  PubMed  Google Scholar 

  • Bansal T, Jaggi M, Khar RK, Talegaonkar S (2009) Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci 12:46–78

    CAS  PubMed  Google Scholar 

  • Barron D, Di Pietro A, Dumontet C, Mcintosh DB (2003) Isoprenoid flavonoids are new leads in the modulation of chemoresistance. Phytochem Rev 1:325–332

    Google Scholar 

  • Bellamy WT (1996) P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol 36:161–183

    CAS  PubMed  Google Scholar 

  • Bois F, Beney C, Boumendjel A et al (1998) Halogenated chalcones with high-affinity binding to P-glycoprotein: potential modulators of multidrug resistance. J Med Chem 41:4161–4164

    CAS  PubMed  Google Scholar 

  • Bois F, Boumendjel A, Mariotte AM et al (1999) Synthesis and biological activity of 4-alkoxy chalcones: potential hydrophobic modulators of P-glycoprotein-mediated multidrug resistance. Bioorg Med Chem 7:2691–2695

    CAS  PubMed  Google Scholar 

  • Borska S, Sopel M, Chmielewska M et al (2010) Quercetin as a potential modulator of P-glycoprotein expression and function in cells of human pancreatic carcinoma line resistant to daunorubicin. Molecules 15:857–870

    CAS  PubMed  Google Scholar 

  • Boumendjel A, Di Pietro A, Dumontet C, Barron D (2002) Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Med Res Rev 22:512–529

    CAS  PubMed  Google Scholar 

  • Brand W, Schutte ME, Williamson G et al (2006) Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients. Biomed Pharmacother 60:508–519

    CAS  PubMed  Google Scholar 

  • Brandt C, Bethmann K, Gastens AM, Löscher W (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211

    CAS  PubMed  Google Scholar 

  • Breier A, Gibalova L, Seres M et al (2013) New insight into p-glycoprotein as a drug target. Anticancer Agents Med Chem 13:159–170

    CAS  PubMed  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    CAS  PubMed  Google Scholar 

  • Cassidy CE, Setzer WN (2010) Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: a molecular docking analysis. J Mol Model 16:311–326

    CAS  PubMed  Google Scholar 

  • Castro AF, Altenberg GA (1997) Inhibition of drug transport by genistein in multidrug-resistant cells expressing P-glycoprotein. Biochem Pharmacol 53:89–93

  • Castro WVDE, Mertens-Talcott S, Derendorf H (2007) Grapefruit juice-drug interactions: grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells. J Pharm Sci 96:2808–2817

    PubMed  Google Scholar 

  • Chan LMS, Lowes S, Hirst BH (2004) The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21:25–51

    CAS  PubMed  Google Scholar 

  • Chan K-F, Zhao Y, Chow TWS et al (2009) Flavonoid dimers as bivalent modulators for p-glycoprotein-based multidrug resistance: structure-activity relationships. ChemMedChem 4:594–614

    CAS  PubMed  Google Scholar 

  • Chang X (2007) A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1. Cancer Metastasis Rev 26:15–37

    CAS  PubMed  Google Scholar 

  • Chang C, Bahadduri PM, Polli JE et al (2006) Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab Dispos 34:1976–1984

    CAS  PubMed  Google Scholar 

  • Chen C, Zhou J, Ji C (2010) Quercetin: a potential drug to reverse multidrug resistance. Life Sci 87:333–338

    CAS  PubMed  Google Scholar 

  • Chieli E, Romiti N, Rodeiro I, Garrido G (2009) In vitro effects of Mangifera indica and polyphenols derived on ABCB1/P-glycoprotein activity. Food Chem Toxicol 47:2703–2710

    CAS  PubMed  Google Scholar 

  • Cho Y-A, Choi D-H, Choi J-S (2009) Effect of hesperidin on the oral pharmacokinetics of diltiazem and its main metabolite, desacetyldiltiazem, in rats. J Pharm Pharmacol 61:825–829

    CAS  PubMed  Google Scholar 

  • Cho Y-A, Choi J-S, Burm J-P (2011) Effects of the antioxidant baicalein on the pharmacokinetics of nimodipine in rats: a possible role of P-glycoprotein and CYP3A4 inhibition by baicalein. Pharmacol Rep 63:1066–1073

    CAS  PubMed  Google Scholar 

  • Choi J-S, Burm JP (2006) Enhanced nimodipine bioavailability after oral administration of nimodipine with morin, a flavonoid, in rabbits. Arch Pharm Res 29:333–338

    CAS  PubMed  Google Scholar 

  • Choi J-S, Han H-K (2005) Pharmacokinetic interaction between diltiazem and morin, a flavonoid, in rats. Pharmacol Res 52:386–391

    CAS  PubMed  Google Scholar 

  • Choi J-S, Kang KW (2008) Enhanced tamoxifen bioavailability after oral administration of tamoxifen in rats pretreated with naringin. Arch Pharm Res 31:1631–1636

    CAS  PubMed  Google Scholar 

  • Choi J-S, Li X (2005) Enhanced diltiazem bioavailability after oral administration of diltiazem with quercetin to rabbits. Int J Pharm 297:1–8

    CAS  PubMed  Google Scholar 

  • Choi J-S, Choi H-K, Shin S-C (2004a) Enhanced bioavailability of paclitaxel after oral coadministration with flavone in rats. Int J Pharm 275:165–170

    CAS  PubMed  Google Scholar 

  • Choi J-S, Jo B-W, Kim Y-C (2004b) Enhanced paclitaxel bioavailability after oral administration of paclitaxel or prodrug to rats pretreated with quercetin. Eur J Pharm Biopharm 57:313–318

  • Choi B-C, Choi J-S, Han H-K (2006) Altered pharmacokinetics of paclitaxel by the concomitant use of morin in rats. Int J Pharm 323:81–85

    CAS  PubMed  Google Scholar 

  • Choi D-H, Li C, Choi J-S (2010) Effects of myricetin, an antioxidant, on the pharmacokinetics of losartan and its active metabolite, EXP-3174, in rats: possible role of cytochrome P450 3A4, cytochrome P450 2C9 and P-glycoprotein inhibition by myricetin. J Pharm Pharmacol 62:908–914

    CAS  PubMed  Google Scholar 

  • Choi J-S, Piao Y-J, Kang KW (2011a) Effects of quercetin on the bioavailability of doxorubicin in rats: role of CYP3A4 and P-gp inhibition by quercetin. Arch Pharm Res 34:607–613

    CAS  PubMed  Google Scholar 

  • Choi S-J, Shin S-C, Choi J-S (2011b) Effects of myricetin on the bioavailability of doxorubicin for oral drug delivery in rats: possible role of CYP3A4 and P-glycoprotein inhibition by myricetin. Arch Pharm Res 34:309–315

  • Chokchaisiri R, Suaisom C, Sriphota S et al (2009) Bioactive flavonoids of the flowers of Butea monosperma. Chem Pharm Bull (Tokyo) 57:428–432

    CAS  Google Scholar 

  • Chung SY, Sung MK, Kim NH et al (2005) Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch Pharm Res 28:823–828

    CAS  PubMed  Google Scholar 

  • Chung SY, Jang DS, Han A et al (2007) Modulation of P-glycoprotein-mediated resistance by kaempferol derivatives isolated from Zingiber zerumbet. Phytother Res 21:565–569

  • Coley HM (2010) Overcoming multidrug resistance in cancer: clinical studies of p-glycoprotein inhibitors. Methods Mol Biol 596:341–358

    CAS  PubMed  Google Scholar 

  • Comte G, Daskiewicz JB, Bayet C et al (2001) C-Isoprenylation of flavonoids enhances binding affinity toward P-glycoprotein and modulation of cancer cell chemoresistance. J Med Chem 44:763–768

    CAS  PubMed  Google Scholar 

  • Conseil G, Baubichon-Cortay H, Dayan G et al (1998) Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci USA 95:9831–9836

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cook N, Samman S (1996) Flavonoids: chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76

    CAS  Google Scholar 

  • Corea G, Di Pietro A, Dumontet C et al (2009) Jatrophane diterpenes from Euphorbia spp. as modulators of multidrug resistance in cancer therapy. Phytochem Rev 8:431–447

    CAS  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    CAS  PubMed  Google Scholar 

  • Dantzig AH, de Alwis DP, Burgess M (2003) Considerations in the design and development of transport inhibitors as adjuncts to drug therapy. Adv Drug Deliv Rev 55:133–150

    CAS  PubMed  Google Scholar 

  • De Castro WV, Mertens-Talcott S, Derendorf H, Butterweck V (2008) Effect of grapefruit juice, naringin, naringenin, and bergamottin on the intestinal carrier-mediated transport of talinolol in rats. J Agric Food Chem 56:4840–4845

    PubMed  Google Scholar 

  • De Wet H, McIntosh DB, Conseil G et al (2001) Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain of mouse P-glycoprotein: structure-activity relationships for flavonoid binding. Biochemistry 40:10382–10391

    PubMed  Google Scholar 

  • Deeley RG, Westlake C, Cole SPC (2006) Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86:849–899

    CAS  PubMed  Google Scholar 

  • Deferme S, Augustijns P (2003) The effect of food components on the absorption of P-gp substrates: a review. J Pharm Pharmacol 55:153–162

    CAS  PubMed  Google Scholar 

  • Del Amo EM, Heikkinen AT, Mönkkönen J (2009) In vitro-in vivo correlation in P-glycoprotein mediated transport in intestinal absorption. Eur J Pharm Sci 36:200–211

    PubMed  Google Scholar 

  • Di Pietro A, Conseil G, Pérez-victoria JM et al (2002) Cellular and molecular life sciences modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell Mol Life Sci 59:307–322

    PubMed  Google Scholar 

  • Dinis-Oliveira RJ, Remião F, Duarte J et al (2006) P-glycoprotein induction: an antidotal pathway for paraquat-induced lung toxicity. Free Radic Biol Med 41:1213–1224

    CAS  PubMed  Google Scholar 

  • Doran A, Obach RS, Smith BJ et al (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33:165–174

    CAS  PubMed  Google Scholar 

  • Du G-J, Zhang Z, Wen X-D et al (2012) Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4:1679–1691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fang S-H, Hou Y-C, Chao P-DL (2005) Pharmacokinetic and pharmacodynamic interactions of morin and cyclosporin. Toxicol Appl Pharmacol 205:65–70

    CAS  PubMed  Google Scholar 

  • Fernández SP, Wasowski C, Paladini AC, Marder M (2005) Synergistic interaction between hesperidin, a natural flavonoid, and diazepam. Eur J Pharmacol 512:189–198

    PubMed  Google Scholar 

  • Fortuna A, Alves G, Falcão A (2011) In vitro and in vivo relevance of the P-glycoprotein probe substrates in drug discovery and development: focus on rhodamine 123, digoxin and talinolol. J Bioequiv Availab 01:1–23

    Google Scholar 

  • Fromm MF (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 25:423–429

    CAS  PubMed  Google Scholar 

  • Gazák R, Walterová D, Kren V (2007) Silybin and silymarin-new and emerging applications in medicine. Curr Med Chem 14:315–338

    PubMed  Google Scholar 

  • Giacomini KM, Huang S-M, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    CAS  PubMed  Google Scholar 

  • Girardin F (2006) Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci 8:311–321

    PubMed Central  PubMed  Google Scholar 

  • Go WJ, Ryu JH, Qiang F, Han H-K (2009) Evaluation of the flavonoid oroxylin A as an inhibitor of P-glycoprotein-mediated cellular efflux. J Nat Prod 72:1616–1619

    CAS  PubMed  Google Scholar 

  • Guidance for Industry (2006) Drug interaction studies: study design, data analysis, and implications for dosing and labeling. U.S. Department of Health and Human Services, FDA, CDER, CBER

  • Hadjeri M, Barbier M, Ronot X et al (2003) Modulation of P-glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues. J Med Chem 46:2125–2131

    CAS  PubMed  Google Scholar 

  • Harborne JB (1962) Plant polyphenols. 5: occurrence of azalein and related pigments in flowers of Plumbago and Rhododendron species. Arch Biochem Biophys 96:171–178

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Shirato T (2002) Two new flavonoid glycosides from the leaves of Phellodendron amurense Ruprecht. J Am Chem Soc 75:5507–5511

    Google Scholar 

  • Hendrich AB (2006) Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol Sin 27:27–40

    CAS  PubMed  Google Scholar 

  • Hennessy M, Spiers JP (2007) A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol Res 55:1–15

    CAS  PubMed  Google Scholar 

  • Horowitz RM, Gentili B (1960) Flavonoids of the Ponderosa lemon. Nature 185:319

    CAS  PubMed  Google Scholar 

  • Hsiu S-L, Hou Y-C, Wang Y-H et al (2002) Quercetin significantly decreased cyclosporin oral bioavailability in pigs and rats. Life Sci 72:227–235

    CAS  PubMed  Google Scholar 

  • Huisman MT, Smit JW, Wiltshire HR et al (2003) Assessing safety and efficacy of directed P-glycoprotein inhibition to improve the pharmacokinetic properties of saquinavir coadministered with ritonavir. J Pharmacol Exp Ther 304:596–602

    CAS  PubMed  Google Scholar 

  • Ikegawa T, Ushigome F, Koyabu N, Morimoto S (2000) Inhibition of P-glycoprotein by orange juice components, polymethoxyflavones in adriamycin-resistant human myelogenous leukemia (K562/ADM) cells. Cancer Lett 160:21–28

  • Jäger AK, Saaby L (2011) Flavonoids and the CNS. Molecules 16:1471–1485

    PubMed  Google Scholar 

  • Jeong J-M, Choi C-H (2007) Enhancement of paclitacel transport and cytotoxicity by 7,3’,4’-trimethoxyflavone, a P-glycoprotein inhibitor. J Pharm Pharm Sci 10:547–553

  • Jodoin J, Demeule M, Beliveau R (2002) Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols. Biochim Biophys Acta 1542:149–159

    CAS  PubMed  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    CAS  PubMed  Google Scholar 

  • Katiyar SK, Meleth S, Sharma SD (2008) Silymarin, a flavonoid from milk thistle (Silybum marianum L.), inhibits UV-induced oxidative stress through targeting infiltrating CD11b+ cells in mouse skin. Photochem Photobiol 84:266–271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H (2011) Flavonoids as inhibitors of human CD38. Bioorg Med Chem Lett 21:3939–3942

    CAS  PubMed  Google Scholar 

  • Kemper EM, van Zandbergen AE, Cleypool C et al (2003) Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res 9:2849–2855

    CAS  PubMed  Google Scholar 

  • Keung WM, Vallee BL (1993) Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc Natl Acad Sci USA 90:1247–1251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khan IA, Avery MA, Burandt CL et al (2000) Antigiardial activity of isoflavones from Dalbergia frutescens bark. J Nat Prod 63:1414–1416

    CAS  PubMed  Google Scholar 

  • Khantamat O, Chaiwangyen W, Porn-ngarm L (2004) Screening of flavonoids for their potential inhibitory effect on p-glycoprotein activity in human cervical carcinoma KB cells. Chiang Mai Med Bull 43:45–56

  • Kim D-H, Na H-K, Oh TY et al (2004) Eupatilin, a pharmacologically active flavone derived from Artemisia plants, induces cell cycle arrest in ras-transformed human mammary epithelial cells. Biochem Pharmacol 68:1081–1087

    CAS  PubMed  Google Scholar 

  • Kim K-A, Park P-W, Park J-Y (2009) Short-term effect of quercetin on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein, in healthy volunteers. Eur J Clin Pharmacol 65:609–614

    CAS  PubMed  Google Scholar 

  • Kim YH, Lee YS, Choi EM (2010) Chrysoeriol isolated from Eurya cilliata leaves protects MC3T3-E1 cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. J Appl Toxicol 30:666–673

    CAS  PubMed  Google Scholar 

  • Kitagawa S (2006) Inhibitory effects of polyphenols on p-glycoprotein-mediated transport. Biol Pharm Bull 29:1–6

    CAS  PubMed  Google Scholar 

  • Kitagawa S, Nabekura T, Kamiyama S (2004) Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. J Pharm Pharmacol 56:1001–1005

  • Kitagawa S, Nabekura T, Takahashi T et al (2005) Structure-activity relationships of the inhibitory effects of flavonoids on P-glycoprotein-mediated transport in KB-C2 cells. Biol Pharm Bull 28:2274–2278

    CAS  PubMed  Google Scholar 

  • Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283

    CAS  PubMed  Google Scholar 

  • Kubota H, Ishihara H, Langmann T et al (2006) Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res 68:213–228

    CAS  PubMed  Google Scholar 

  • Kumar G, Karthik L, Rao KVB (2013) Phytochemical composition and in vitro antioxidant activity of aqueous extract of Aerva lanata (L.) Juss. ex Schult. Stem (Amaranthaceae). Asian Pac J Trop Med 6:180–187

    CAS  PubMed  Google Scholar 

  • Kwan P, Brodie MJ (2005) Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia 46:224–235

    CAS  PubMed  Google Scholar 

  • Lam IK, Alex D, Wang Y-H et al (2012) In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: identifying sinensetin as a novel antiangiogenesis agent. Mol Nutr Food Res 56:945–956

    CAS  PubMed  Google Scholar 

  • Lazarowski A, Czornyj L, Lubienieki F et al (2007) ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia 48(Suppl 5):140–149

    CAS  PubMed  Google Scholar 

  • Lee C-K, Choi J-S (2010) Effects of silibinin, inhibitor of CYP3A4 and P-glycoprotein in vitro, on the pharmacokinetics of paclitaxel after oral and intravenous administration in rats. Pharmacology 85:350–356

    CAS  PubMed  Google Scholar 

  • Ley JP, Krammer G, Reinders G et al (2005) Evaluation of bitter masking flavanones from Herba Santa (Eriodictyon californicum (H. and A.) Torr., Hydrophyllaceae). J Agric Food Chem 53:6061–6066

    CAS  PubMed  Google Scholar 

  • Li X, Choi J-S (2007) Effect of genistein on the pharmacokinetics of paclitaxel administered orally or intravenously in rats. Int J Pharm 337:188–193

    CAS  PubMed  Google Scholar 

  • Li C, Choi JS (2008) Effects of epigallocatechin gallate on the bioavailability and pharmacokinetics of diltiazem in rats. Pharmazie 63:815–818

    CAS  PubMed  Google Scholar 

  • Li X, Choi J-S (2009) Effects of quercetin on the pharmacokinetics of Etoposide after oral or intravenous administration of etoposide in rats. Anticancer Res 29:1411–1415

    CAS  PubMed  Google Scholar 

  • Li X, Yun J-K, Choi J-S (2007) Effects of morin on the pharmacokinetics of etoposide in rats. Biopharm Drug Dispos 28:151–156

    PubMed  Google Scholar 

  • Li C, Li X, Choi J-S (2009) Enhanced bioavailability of etoposide after oral or intravenous administration of etoposide with kaempferol in rats. Arch Pharm Res 32:133–138

    CAS  PubMed  Google Scholar 

  • Li C, Kim M, Choi H, Choi J (2011) Effects of baicalein on the pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats: possible role of cytochrome P450 3A4 and P-glycoprotein inhibition by baicalein. Arch Pharm Res 34:1965–1972

    CAS  PubMed  Google Scholar 

  • Lim S-C, Choi J-S (2006) Effects of naringin on the pharmacokinetics of intravenous paclitaxel in rats. Biopharm Drug Dispos 27:443–447

    CAS  PubMed  Google Scholar 

  • Lin JH (2003) Drug–drug interaction mediated by inhibition and induction of P-glycoprotein. Adv Drug Deliv Rev 55:53–81

    CAS  PubMed  Google Scholar 

  • Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98

    CAS  PubMed  Google Scholar 

  • Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40(Suppl):S3–S8

    CAS  PubMed  Google Scholar 

  • Linnet K, Ejsing TB (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain: focus on psychotropic drugs. Eur Neuropsychopharmacol 18:157–169

    CAS  PubMed  Google Scholar 

  • Lohner K, Schnäbele K, Daniel H et al (2007) Flavonoids alter P-gp expression in intestinal epithelial cells in vitro and in vivo. Mol Nutr Food Res 51:293–300

    CAS  PubMed  Google Scholar 

  • Löscher W, Potschka H (2002a) Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 301:7–14

    PubMed  Google Scholar 

  • Löscher W, Potschka H (2002b) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76:22–76

    Google Scholar 

  • Löscher W, Potschka H (2005) Blood-brain barrier active efflux transporters: aTP-binding cassette gene family. NeuroRx 2:86–98

    PubMed Central  PubMed  Google Scholar 

  • Makino T, Kanemaru M, Okuyama S et al (2013) Anti-allergic effects of enzymatically modified isoquercitrin (α-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, α-oligoglucosyl rutin, and quercetin, when administered orally to mice. J Nat Med 67:881–886

    CAS  PubMed  Google Scholar 

  • Marquez B, Van Bambeke F (2011) ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug–drug interactions. Curr Drug Targets 12:600–620

    CAS  PubMed  Google Scholar 

  • Matheny CJ, Lamb MW, Brouwer KR, Pollack GM (2001) Pharmacokinetic and pharmacodynamic implications of P-glycoprotein modulation. Pharmacotherapy 21:778–796

    CAS  PubMed  Google Scholar 

  • Matsui T, Ito C, Itoigawa M et al (2009) Effect of natsudaidain isolated from Citrus plants on TNF-alpha and cyclooxygenase-2 expression in RBL-2H3 cells. J Pharm Pharmacol 61:109–114

    CAS  PubMed  Google Scholar 

  • Mertens-Talcott SU, De Castro WV, Manthey JA et al (2007) Polymethoxylated flavones and other phenolic derivates from citrus in their inhibitory effects on P-glycoprotein-mediated transport of talinolol in Caco-2 cells. J Agric Food Chem 55:2563–2568

    CAS  PubMed  Google Scholar 

  • Miller DS, Bauer B, Hart AMS (2009) Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve CNS pharmacotherapy. Pharmacol Rev 60:196–209

    Google Scholar 

  • Mitsunaga Y, Takanaga H, Matsuo H et al (2000) Effect of bioflavonoids on vincristine transport across blood–brain barrier. Eur J Pharmacol 395:193–201

    CAS  PubMed  Google Scholar 

  • Miyake Y, Mochizuki M, Okada M et al (2007) Isolation of antioxidative phenolic glucosides from lemon juice and their suppressive effect on the expression of blood adhesion molecules. Biosci Biotechnol Biochem 71:1911–1919

    CAS  PubMed  Google Scholar 

  • Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y (2003) Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 55:425–461

    CAS  PubMed  Google Scholar 

  • Moon YJ, Wang X, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol Vitr 20:187–210

    CAS  Google Scholar 

  • Moreno Escobosa MC, Cruz Granados S, Moya Quesada MC (2012) Erythema and hand edema due to flavoxate. J Investig Allergol Clin Immunol 22:390–391

    CAS  PubMed  Google Scholar 

  • Morris ME, Zhang S (2006) Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci 78:2116–2130

    CAS  PubMed  Google Scholar 

  • Ofer M, Wolffram S, Koggel A et al (2005) Modulation of drug transport by selected flavonoids: involvement of P-gp and OCT? Eur J Pharm Sci 25:263–271

    CAS  PubMed  Google Scholar 

  • Ogawa Y, Oku H, Iwaoka E et al (2006) Allergy-preventive phenolic glycosides from Populus sieboldii. J Nat Prod 69:1215–1217

    CAS  PubMed  Google Scholar 

  • Palmeira A, Rodrigues F, Sousa E et al (2011) New uses for old drugs: pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. Chem Biol Drug Des 78:57–72

    CAS  PubMed  Google Scholar 

  • Park JH, Park JH, Hur HJ et al (2012) Effects of silymarin and formulation on the oral bioavailability of paclitaxel in rats. Eur J Pharm Sci 45:296–301

    CAS  PubMed  Google Scholar 

  • Patanasethanont D, Nagai J, Yumoto R et al (2007) Effects of Kaempferia Parviflora extracts and their flavone constituents on P-glycoprotein function. J Pharm Sci 96:223–233

  • Pathak SM, Udupa N (2010) Pre-clinical evidence of enhanced oral bioavailability of the P-glycoprotein substrate talinolol in combination with morin. Biopharm Drug Dispos 31:202–214

    CAS  PubMed  Google Scholar 

  • Peng SX, Ritchie DM, Cousineau M et al (2006) Altered oral bioavailability and pharmacokinetics of P-glycoprotein substrates by coadministration of biochanin A. J Pharm Sci 95:1984–1993

    CAS  PubMed  Google Scholar 

  • Pérez-Tomás R (2006) Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 13:1859–1876

    PubMed  Google Scholar 

  • Piao Y-J, Choi J-S (2008a) Effects of morin on the pharmacokinetics of nicardipine after oral and intravenous administration of nicardipine in rats. J Pharm Pharmacol 60:625–629

    CAS  PubMed  Google Scholar 

  • Piao Y-J, Choi J-S (2008b) Enhanced bioavailability of verapamil after oral administration with hesperidin in rats. Arch Pharm Res 31:518–522

    CAS  PubMed  Google Scholar 

  • Piao Y-J, Shin S-C, Choi J-S (2008) Effects of oral kaempferol on the pharmacokinetics of tamoxifen and one of its metabolites, 4-hydroxytamoxifen, after oral administration of tamoxifen to rats. Biopharm Drug Dispos 29:245–249

    CAS  PubMed  Google Scholar 

  • Potschka H (2012) Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev 64:943–952

    CAS  PubMed  Google Scholar 

  • PubChem Coumpound Database PubChem Coumpound Database. http://www.ncbi.nlm.nih.gov/pccompound/

  • Raj (2001) Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J Pharmacol 33:2

    Google Scholar 

  • Rakwal R, Agrawal G, Yonekura M, Kodama O (2000) Naringenin 7-O-methyltransferase involved in the biosynthesis of the flavanone phytoalexin sakuranetin from rice (Oryza sativa L.). Plant Sci 155:213–221

    CAS  PubMed  Google Scholar 

  • Ramakrishnan P (2003) The role of P-glycoprotein in the blood–brain barrier. Einstein J Biol Med 19:160–165

    CAS  Google Scholar 

  • Rao BN, Srinivas M, Kumar YS, Rao YM (2007) Effect of silymarin on the oral bioavailability of ranitidine in healthy human volunteers. Drug Metab Drug Interact 22:175–185

    Google Scholar 

  • Rao YK, Lee M-J, Chen K et al (2011) Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) Osbeck leaves: enhanced adiponectin secretion and insulin receptor phosphorylation in 3T3-L1 Cells. Evid Based Complement Alternat Med 2011:624375

  • Raub TJ (2006) P-glycoprotein recognition of substrates and circumvention through rational drug design. Mol Pharm 3:3–25

    CAS  PubMed  Google Scholar 

  • Romano B, Pagano E, Montanaro V et al (2013) Novel Insights into the pharmacology of flavonoids. Phytother Res 27:1588–1596

    CAS  PubMed  Google Scholar 

  • Romiti N, Tramonti G, Donati A, Chieli E (2004) Effects of grapefruit juice on the multidrug transporter P-glycoprotein in the human proximal tubular cell line HK-2. Life Sci 76:293–302

    CAS  PubMed  Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    CAS  PubMed  Google Scholar 

  • Sacco S, Maffei M (1997) The effect of isosakuranetin (5,7-dihydroxy 4′-methoxy flavanone) on potassium uptake in wheat root segments. Phytochemistry 46:245–248

    CAS  Google Scholar 

  • Sauna ZE, Smith MM, Marianna M, Kerr KM (2001) The mechanism of action of multidrug-resistance-linked P-glycoprotein. J Bioenerg Biomembr 33:481–491

  • Scambia G, Ranelletti FO, Panici PB et al (1994) Quercetin potentiates the effect of Adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother Pharmacol 34:459–464

    CAS  PubMed  Google Scholar 

  • Schinkel A (1999) P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev 36:179–194

    CAS  PubMed  Google Scholar 

  • Schinkel AH, Jonker JW (2012) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    Google Scholar 

  • Seegers U, Potschka H, Löscher W (2002) Lack of effects of prolonged treatment with phenobarbital or phenytoin on the expression of P-glycoprotein in various rat brain regions. Eur J Pharmacol 451:149–155

    CAS  PubMed  Google Scholar 

  • Shajib MTI, Pedersen HA, Mortensen AG et al (2012) Phytotoxic effect, uptake, and transformation of biochanin A in selected weed species. J Agric Food Chem 60:10715–10722

    CAS  PubMed  Google Scholar 

  • Sheu M-T, Liou Y-B, Kao Y-H et al (2010) A quantitative structure-activity relationship for the modulation effects of flavonoids on p-glycoprotein-mediated transport. Chem Pharm Bull (Tokyo) 58:1187–1194

    CAS  Google Scholar 

  • Shin S-C, Choi J-S, Li X (2006) Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int J Pharm 313:144–149

    CAS  PubMed  Google Scholar 

  • Shin S-C, Piao Y-J, Choi J-S (2008) Effects of morin on the bioavailability of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. In Vivo (Brooklyn) 22:391–395

    CAS  Google Scholar 

  • Shin SC, Li C, Choi JS (2009) Effects of baicalein, an antioxidant, on the bioavailability of doxorubicin in rats: possible role of P-glycoprotein inhibition by baicalein. Pharmazie 64:579–583

    CAS  PubMed  Google Scholar 

  • Shohai T, Shafique M, Dhanya N, Divakar MC (2011) Importance of flavonoides in therapeutics. Hygeia J D Med 3:1–18

    Google Scholar 

  • Singh SP, Wahajuddin Raju KSR et al (2012) Reduced bioavailability of tamoxifen and its metabolite 4-hydroxytamoxifen after oral administration with biochanin A (an isoflavone) in rats. Phytother Res 26:303–307

    CAS  PubMed  Google Scholar 

  • Spencer JPE (2007) The interactions of flavonoids within neuronal signalling pathways. Genes Nutr 2:257–273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stouch TR, Gudmundsson O (2002) Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Deliv Rev 54:315–328

  • Sugimoto H, Hirabayashi H, Kimura Y et al (2011) Quantitative investigation of the impact of P-glycoprotein inhibition on drug transport across blood–brain barrier in rats. Drug Metab Dispos 39:8–14

    CAS  PubMed  Google Scholar 

  • Sun H, Dai H, Shaik N, Elmquist WF (2003) Drug efflux transporters in the CNS. Adv Drug Deliv Rev 55:83–105

    CAS  PubMed  Google Scholar 

  • Sun J, He Z-G, Cheng G et al (2004) Multidrug resistance P-glycoprotein: crucial significance in drug disposition and interaction. Med Sci Monit 10:5–14

    Google Scholar 

  • Takanaga H, Ohnishi A, Matsuo H, Sawada Y (1998) Inhibition of vinblastine efflux mediated by P-glycoprotein by grapefruit juice components in caco-2 cells. Biol Pharm Bull 21:1062–1066

  • Takanaga H, Ohnishi A, Yamada S et al (2000) Polymethoxylated flavones in orange juice are inhibitors of P-glycoprotein but not cythocrome P450 3A4. J Pharmacol Exp Ther 293:230–236

  • Tandon VR, Kapoor B, Bano G et al (2006) P-glycoprotein : pharmacological relevance relevance. Indian J Pharmacol 38:13–24

    CAS  Google Scholar 

  • Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals : a Review. Trop J Pharm Res 7:1089–1099

    Google Scholar 

  • Thilakarathna SH, Rupasinghe HPV (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5:3367–3387

    PubMed Central  PubMed  Google Scholar 

  • Thomas H, Coley HM (2013) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10:159–165

    Google Scholar 

  • Toh JY, Tan VMH, Lim PCY et al (2013) Flavonoids from fruit and vegetables: a focus on cardiovascular risk factors. Curr Atheroscler Rep 15:368

    CAS  PubMed  Google Scholar 

  • Toki K, Saito N, Irie Y et al (2008) 7-O-Methylated anthocyanidin glycosides from Catharanthus roseus. Phytochemistry 69:1215–1219

    CAS  PubMed  Google Scholar 

  • Tran VH, Marks D, Duke RK et al (2011) Modulation of P-glycoprotein-mediated anticancer drug accumulation, cytotoxicity, and ATPase activity by flavonoid interactions. Nutr Cancer 63:435–443

    CAS  PubMed  Google Scholar 

  • Trompier D, Baubichon-Cortay H, Chang X-B et al (2003) Multiple flavonoid-binding sites within multidrug resistance protein MRP1. Cell Mol Life Sci 60:2164–2177

    CAS  PubMed  Google Scholar 

  • Tsuji PA, Stephenson KK, Wade KL et al (2013) Structure-activity analysis of flavonoids: direct and indirect antioxidant, and antiinflammatory potencies and toxicities. Nutr Cancer 65:1014–1025

    CAS  PubMed  Google Scholar 

  • Udaya Kumar N, Sailendra M, Peddanna K et al (2011) Virtual screening of flavonoids as inhibitory agents of p-glycoprotein. IJABPT 2:130–140

    Google Scholar 

  • Van der Kolk DM, de Vries EG, van Putten WJ et al (2000) P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia. Clin Cancer Res 6:3205–3214

    PubMed  Google Scholar 

  • Varma M (2003) P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res 48:347–359

    CAS  PubMed  Google Scholar 

  • Vauzour D, Vafeiadou K, Rodriguez-Mateos A et al (2008) The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3:115–126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Volk H, Burkhardt K, Potschka H et al (2004) Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures. Neuroscience 123:751–759

    CAS  PubMed  Google Scholar 

  • Wagner H, Aurnhammer G, Hörhammer L et al (1969) Synthesis of poncirin, an isosakuranetin-7-beta-neohesperidoside from Poncirus trifoliata Raf. Chem Ber 102:785–791

    CAS  PubMed  Google Scholar 

  • Wang EJ, Casciano CN, Clement RP, Johnson WW (2001) Inhibition of P-glycoprotein transport function by grapefruit juice psoralen. Pharm Res 18:432–438

  • Wang E, Barecki-Roach M, Johnson WW (2002) Elevation of P-glycoprotein function by a catechin in green tea. Biochem Biophys Res Commun 297:412–418

    CAS  PubMed  Google Scholar 

  • Wang Y-H, Chao P-DL, Hsiu S-L et al (2004) Lethal quercetin-digoxin interaction in pigs. Life Sci 74:1191–1197

  • Wang Y-H, Li Y, Yang S-L, Yang L (2005) An in silico approach for screening flavonoids as P-glycoprotein inhibitors based on a Bayesian-regularized neural network. J Comput Aided Mol Des 19:137–147

    CAS  PubMed  Google Scholar 

  • Wang H, Zhao X, Wang Y, Yin S (2007) Potential toxicities of flavonoids. Wei Sheng Yan Jiu 36:640–642

    CAS  PubMed  Google Scholar 

  • Wasowski C, Marder M (2012) Flavonoids as GABA A receptor ligands: the whole story? J Exp Pharmacol 4:9–24

    CAS  Google Scholar 

  • Wesołowska O (2011) Interaction of phenothiazines, stilbenes and flavonoids with multidrug resistance-associated transporters, P-glycoprotein and MRP1. Acta Biochim Pol 58:433–448

    PubMed  Google Scholar 

  • Wesołowska O, Hendrich AB, Łaniapietrzak B et al (2009) Perturbation of the lipid phase of a membrane is not involved in the modulation of MRP1 transport activity by flavonoids. Cell Mol Biol Lett 14:199–221

    PubMed  Google Scholar 

  • Yang K, Wu J, Li X (2008) Recent advances in the research of P-glycoprotein inhibitors. Biosci Trends 2:137–146

    PubMed  Google Scholar 

  • Yang SH, Lee JH, Lee DY et al (2011) Effects of morin on the pharmacokinetics of docetaxel in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors. Arch Pharm Res 34:1729–1734

  • Yang J, Qian D, Guo J et al (2013) Identification of the major metabolites of hyperoside produced by the human intestinal bacteria using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. J Ethnopharmacol 147:174–179

    CAS  PubMed  Google Scholar 

  • Yeum C-H, Choi J-S (2006) Effect of naringin pretreatment on bioavailability of verapamil in rabbits. Arch Pharm Res 29:102–107

    CAS  PubMed  Google Scholar 

  • Yoo HH, Lee M, Chung HJ et al (2007) Effects of diosmin, a flavonoid glycoside in citrus fruits, on P-glycoprotein-mediated drug efflux in human intestinal Caco-2 cells. J Agric Food Chem 55:7620–7625

    CAS  PubMed  Google Scholar 

  • Zhang S, Morris ME (2003a) Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-Glycoprotein-mediated transport. J Pharmacol Exp Ther 304:1258–1267

    CAS  PubMed  Google Scholar 

  • Zhang S, Morris ME (2003b) Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm Res 20:1184–1191

    CAS  PubMed  Google Scholar 

  • Zhang L, Strong JM, Qiu W et al (2006) Scientific perspectives on drug transporters and their role in drug interactions. Mol Pharm 3:62–69

    CAS  PubMed  Google Scholar 

  • Zhang J, Yang G, Lin R, Hu Z (2011) Determination of paeoniflorin, calycosin-7-O-β-D-glucoside, ononin, calycosin and formononetin in rat plasma after oral administration of Buyang Huanwu decoction for their pharmacokinetic study by liquid chromatography-mass spectrometry. Biomed Chromatogr 25:450–457

    CAS  PubMed  Google Scholar 

  • Zhang C, Kwan P, Zuo Z, Baum L (2012) The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 64:930–942

    CAS  PubMed  Google Scholar 

  • Zhou G-X, Lu C-L, Wang H-S, Yao X-S (2009) An acetyl flavonol from Nervilia fordii (Hance) Schltr. J Asian Nat Prod Res 11:498–502

    PubMed  Google Scholar 

  • Zhu L, Zhao L, Wang H et al (2013) Oroxylin A reverses P-glycoprotein-mediated multidrug resistance of MCF7/ADR cells by G2/M arrest. Toxicol Lett 219:107–115

  • Zou P, Xing L, Tang Q et al (2012) Comparative evaluation of the teratogenicity of genistein and genistin using rat whole embryo culture and limbud micromass culture methods. Food Chem Toxicol 50:2831–2836

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the support of Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the fellowship SFHR/BD/84936/2012, involving the POPH—QREN which is co-funded by FSE and MEC. The authors also thank the funding through the Strategic Project PEst-C/SAU/UI0709/2011.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, A., Pousinho, S., Fortuna, A. et al. Flavonoid compounds as reversal agents of the P-glycoprotein-mediated multidrug resistance: biology, chemistry and pharmacology. Phytochem Rev 14, 233–272 (2015). https://doi.org/10.1007/s11101-014-9358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9358-0

Keywords

Navigation