Skip to main content

Advertisement

Log in

Phytochemicals as a potential source for TNF-α inhibitors

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Cytokines play an important role in the immune system. Any disorder in the regulation of cytokines can lead to the development of inflammatory diseases. Tumor necrosis factor-α (TNF-α) is one of the most important inflammatory cytokines that controls different types of cell functions. The overproduction of TNF-α is linked with the development of various diseases such as asthma, rheumatoid arthritis, psoriatic arthritis, inflammatory bowel disease, septic shock, diabetes and atherosclerosis. Plants are considered as excellent sources of pharmacologically active compounds. Currently, scientists are searching for natural products with anti-TNF-α properties for the treatment of various inflammatory disorders. At present, protein-based drugs are available for the inhibition of TNF-α, however these have some limitations. Plant might provide an alternative and cost-effective source of drugs that can regulate TNF-α levels. This review briefly highlights the physiological and pathological roles of TNF-α along with a description of plant-derived compounds capable of interfering with TNF-α activity and production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AKT:

A serine/threonine kinase

AP-1:

Activator protein-1

COX-2:

Cycloxygenase 2

DD:

Death domain

EGB-761:

Extract of Ginkgo biloba

ERK:

Extracellular signal-regulated kinases

ICAM-1:

Intercellular adhesion molecule-1

IGF:

Insuline-like growth factor

IκB:

Inhibitor of nuclear factor-kappa B

INOS:

Inducible nitric oxide

IRA:

Insulin receptor activation

LOX-2:

Lipoxygenase-2

LPS:

Lipopolysaccharides

MAPK:

Mitogen activated protein kinase

MCP-1:

Monocyte chemoattractant protein 1

MEKK1:

Mitogen-activated protein kinase kinase 1

NF-κB:

Nuclear factor kappa B

NIK:

Nuclear factor-kB-inducing kinase

NO:

Nitric oxide

PDE4:

Phosphodiesterase 4

PGE2:

Prostaglandin E2

PK:

Protein kinase

RAW-264.7:

Rat leukemia monocyte macrophage cell line

RBL-2H3:

Rat basophilic leukemia mast cell line

RIP:

Receptor activating protein

TACE:

TNF-α converting enzyme

TNF-α:

Tumor necrosis factor alpha

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

ZZ-CWE:

Crude water extract of Zingiber zerumbet

NF-κB:

A protein complex which is found in all animal cells and is actively involved in regulating immune response to infection

T cells:

They belong to a group of white blood cells known as lymphocytes, and play a central role in cell mediated immunity

NK cells:

(Natural killer cells), these are lymphocytes and they are considered as a major component of the immune system

B cells:

These are lymphocytes that play a large role in the humoral immune response

IL-1α and β:

These are pro-inflammatory cytokines involved in immune defense against infection

IC50:

Half maximal inhibitory concentration: is a measure of effectiveness of a compound in inhibiting a biological function

IFN-γ:

Interferon-gamma; a soluble cytokine that is important for innate and adaptive immunity against viral and intracellular bacterial infections

TNF-α:

(Tumor necrosis factor alpha) is a pro inflammatory cytokine involved in the process of inflammation. It is produced by several types of cells but especially macrophages

References

  • Aderem AURJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406(6797):782–787

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Shishodia S, Takada Y, Jackson-Bernitsas D, Ahn KS, Sethi G, Ichikawa H (2006) TNF blockade: an inflammatory issue. In: Numerof R, Dinarello CA, Asadullah K (eds) Cytokines as potential therapeutic targets for inflammatory skin diseases, vol 56. Springer, Berlin Heidelberg, pp 161–186

  • Aranda FJ, Villalaín J (1997) The interaction of abietic acid with phospholipid membranes. BBA-Biomembr 1327(2):171–180

    CAS  Google Scholar 

  • Arima H, Danno G-i (2002) Isolation of antimicrobial compounds from Guava (Psidium guajava L.) and their structural elucidation. Biosci Biotechnol Biochem 66(8):1727–1730

    PubMed  CAS  Google Scholar 

  • Ashnagar A, Naseri NG, Nasab HH (2007) Isolation and identification of anthralin from the roots of rhubarb plant (Rheum palmatum). E-J Chem 4(4):546–549

    CAS  Google Scholar 

  • Ashton CH (2001) Pharmacology and effects of cannabis: a brief review. Br J Psychiatry 178:101–106

    Google Scholar 

  • Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Der CJ, Battle T, Frank DA, Ye K, Murad E, Dubiel W, Soff G, Arbiser JL (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. JBC 278(37):35501–35507

    CAS  Google Scholar 

  • Bakker GC, van Erk MJ, Pellis L, Wopereis S, Rubingh CM, Cnubben NH, Kooistra T, van Ommen B, Hendriks HF (2010) An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr 91(4):1044–1059

    PubMed  CAS  Google Scholar 

  • Barbosa-Filho JM, Piuvezam MR, Moura MD, Silva MS, Lima KVB, da-Cunha EVL, Fechine IM, Takemura OS (2006) Anti-inflammatory activity of alkaloids: a twenty-century review. Rev Bras Farmacogn 16:109–139

    CAS  Google Scholar 

  • Baumann D, Adler S, Hamburger M (2001) A simple isolation method for the major catechins in green tea using high-speed countercurrent chromatography. J Nat Prod 64(3):353–355

    PubMed  CAS  Google Scholar 

  • Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98(24):13681–13686

    PubMed  CAS  Google Scholar 

  • Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF (2005) Resveratrol inhibits nitric oxide and TNF-α production by lipopolysaccharide-activated microglia. Int Immunopharmacol 5(1):185–193

    PubMed  CAS  Google Scholar 

  • Björnsdottir US, Cypcar DM (1999) Asthma: an inflammatory mediator soup. Allergy 54(49):55–61

    PubMed  Google Scholar 

  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385(6618):729–733

    PubMed  CAS  Google Scholar 

  • Bodet C, La VD, Epifano F, Grenier D (2008) Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. J Periodont Res 43(4):400–407

    PubMed  CAS  Google Scholar 

  • Bonizzi G, Karin M (2004) The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6):280–288

    PubMed  CAS  Google Scholar 

  • Boscolo P, del Signore A, Sabbioni E, Di Gioacchino M, Di Giampaolo L, Reale M, Conti P, Paganelli R, Giaccio M (2003) Effects of resveratrol on lymphocyte proliferation and cytokine release. Ann Clin Lab Sci 33(2):226–231

    PubMed  CAS  Google Scholar 

  • Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214(2):149–160

    PubMed  CAS  Google Scholar 

  • Buriani A, Garcia-Bermejo ML, Bosisio E, Xu Q, Li H, Dong X, Simmonds MSJ, Carrara M, Tejedor N, Lucio-Cazana J, Hylands PJ (2012) Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. J Ethnopharmacol 140(3):535–544

    PubMed  Google Scholar 

  • Buxton OM, Cain SW, O’Connor SP, Porter JH, Duffy JF, Wang W, Czeisler CA, Shea SA (2012) Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 4(129):129ra143

    Google Scholar 

  • Cai XF, Shen G, Dat NT, Kang OH, Lee YM, Lee JJ, Kim YH (2003) Inhibitory effect of kaurane type diterpenoids from Acanthopanax koreanum on TNF-α secretion from trypsin-stimulated HMC-1 cells. Arch Pharmacal Res 26(9):731–734

    CAS  Google Scholar 

  • Calder PC (2007) Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot Med 77(5–6):327–335

    CAS  Google Scholar 

  • Campbell J, Ciesielski CJ, Hunt AE, Horwood NJ, Beech JT, Hayes LA, Denys A, Feldmann M, Brennan FM, Foxwell BMJ (2004) A novel mechanism for TNF-α regulation by p38 MAPK: involvement of NF-κB with implications for therapy in rheumatoid arthritis. J Immunol 173(11):6928–6937

    PubMed  CAS  Google Scholar 

  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72(9):3666–3670

    PubMed  CAS  Google Scholar 

  • Castro SBR, Junior COR, Alves CCS, Dias AT, Alves LL, Mazzoccoli L, Zoet MT, Fernandes SA, Teixeira HC, Almeida MV, Ferreira AP (2012) Synthesis of lipophilic genistein derivatives and their regulation of IL-12 and TNF-α in activated J774A.1 cells. Chem Biol Drug Des 79(3):347–352

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Makoto T, Rosen TA, Levine JD, David J (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    PubMed  CAS  Google Scholar 

  • Chae S, Kim P, Cho J, Park J, Lee J, Yoo E, Baik K, Lee J, Park M (1998) Isolation and identification of inhibitory compounds on TNF-α production from Magnolia fargesii. Arch Pharmacal Res 21(1):67–69

    CAS  Google Scholar 

  • Chan MM-Y (1995) Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem Pharmacol 49(11):1551–1556

    PubMed  CAS  Google Scholar 

  • Chandra A, Rana J, Li Y (2001) Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC–MS. J Agric Food Chem 49(8):3515–3521

    PubMed  CAS  Google Scholar 

  • Chang S-H, Choi Y, Park J-A, Jung D-S, Shin J, Yang J-H, Ko S-Y, Kim S-W, Kim J-K (2007) Anti-inflammatory effects of BT-201, an n-butanol extract of Panax notoginseng, observed in vitro and in a collagen-induced arthritis model. Clin Nutr 26(6):785–791

    PubMed  CAS  Google Scholar 

  • Chaung H-C, Ho C-T, Huang T-T (2008) Anti-hypersensitive and anti-inflammatory activities of water extract of Zingiber zerumbet (L.) Smith. Food Agric Immunol 19(2):117–129

    CAS  Google Scholar 

  • Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA (2009) Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB 11(5):373–381

    PubMed  Google Scholar 

  • Chen G, Zhang L, Zhu Y (2006a) Determination of glycosides and sugars in Moutan cortex by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal 41(1):129–134

    PubMed  CAS  Google Scholar 

  • Chen T, Li L-P, Lu X-Y, Jiang H-D, Zeng S (2006b) Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract. J Agricult Food Chem 55(2):273–277

    Google Scholar 

  • Chen F, Yang Z, Liu Y, Li L, Liang W, Wang X, Zhou W, Yang Y, Hu R-M (2008) Berberine inhibits the expression of TNFα, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARγ pathway. Endocrine 33(3):331–337

    PubMed  CAS  Google Scholar 

  • Chen SS, Michael A, Butler-Manuel SA (2012) Advances in the treatment of ovarian cancer: a potential role of antiinflammatory phytochemicals. Discov Med 13(68):7–17

    PubMed  Google Scholar 

  • Cheng Z-J, Kuo S-C, Chan S-C, Ko F-N, Teng C-M (1998) Antioxidant properties of butein isolated from Dalbergia odorifera. BBA-Lipid Lipid Met 1392(2–3):291–299

    CAS  Google Scholar 

  • Chiu J-H, Lay I-S, Su M-Y, Chiu H-L, Chiu A-C, Lui W-Y, Wu C-W (2002) Tumor necrosis factor-producing activity of wogonin in RAW 264.7 murine macrophage cell line. Planta Med 68(11):1036–1039

    PubMed  CAS  Google Scholar 

  • Cho JY, Park J, Yoo ES, Baik KU, Jung JH, Lee J, Park MH (1998) Inhibitory effect of sesquiterpene lactones from Saussurea lappa on tumor necrosis factor-α production in murine macrophage-like cells. Planta Med 64(07):594–597

    PubMed  CAS  Google Scholar 

  • Cho JY, Kim AR, Yoo ES, Baik KU, Park MH (1999) Immunomodulatory effect of Arctigenin, a lignan compound, on tumour necrosis factor-α and nitric oxide production, and lymphocyte proliferation. J Pharm Pharmacol 51(11):1267–1273

    Google Scholar 

  • Cho JY, Baik KU, Yoo ES, Yoshikawa K, Park MH (2000a) In vitro anti-inflammatory effects of neolignan woorenosides from the rhizomes of Coptis japonica. J Nat Prod 63(9):1205–1209

    PubMed  CAS  Google Scholar 

  • Cho JY, Kim PS, Park J, Yoo ES, Baik KU, Kim Y-K, Park MH (2000b) Inhibitor of tumor necrosis factor-α production in lipopolysaccharide-stimulated RAW264.7 cells from Amorpha fruticosa. J Ethnopharmacol 70(2):127–133

    PubMed  CAS  Google Scholar 

  • Cho JY, Kim AR, Park MH (2001a) Lignans from the rhizomes of Coptis japonica differentially act as anti-inflammatory principles. Planta Medica 67:312–316

    PubMed  CAS  Google Scholar 

  • Cho JY, Park J, Kim PS, Yoo ES, Baik KU, Park MH (2001b) Savinin, a lignan from Pterocarpus santalinus inhibits tumor necrosis factor-α production and T cell proliferation. Biol Pharm Bull 24:167–171

    PubMed  CAS  Google Scholar 

  • Cho JY, Yoo ES, Baik KU, Park MH, Han BH (2001c) In vitro inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-α production and its modulation by known TNF-α antagonists. Plant Med 67(3):213–218

    CAS  Google Scholar 

  • Cho MK, Jang YP, Kim YC, Kim SG (2004) Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: The role in TNF-α inhibition. Int Immunopharmacol 4(10–11):1419–1429

    PubMed  CAS  Google Scholar 

  • Choy EHS, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344(12):907–916

    PubMed  CAS  Google Scholar 

  • Chung C-P, Park J-B, Bae K-H (1995) Pharmacological effects of methanolic extract from the root of Scutellaria baicalensis and its flavonoids on human gingival fibroblast. Planta Med 61:150–153

    PubMed  CAS  Google Scholar 

  • Cicero AFG, Vitale G, Savino G, Arletti R (2003) Panax notoginseng (Burk.) effects on fibrinogen and lipid plasma level in rats fed on a high-fat diet. Phytother Res 17(2):174–178

    PubMed  CAS  Google Scholar 

  • Cohan V, Showell H, Fisher D, Pazoles C, Watson J, Turner C, Cheng J (1996) In vitro pharmacology of the novel phosphodiesterase type 4 inhibitor, CP-80633. J Pharmacol Exp Ther 278(3):1356–1361

    PubMed  CAS  Google Scholar 

  • Cohen PS, Nakshatri H, Dennis J, Caragine T, Bianchi M, Cerami A, Tracey KJ (1996) CNI-1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation efficiency. Proc Natl Acad Sci USA 93(9):3967–3971

    PubMed  CAS  Google Scholar 

  • Comalada M, Ballester I, Bailón E, Sierra S, Xaus J, Gálvez J, de Medina FS, Zarzuelo A (2006) Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure–activity relationship. Biochem Pharmacol 72(8):1010–1021

    PubMed  CAS  Google Scholar 

  • Cordell GA, Quinn-Beattie ML, Farnsworth NR (2001) The potential of alkaloids in drug discovery. Phytother Res 15(3):183–205

    PubMed  CAS  Google Scholar 

  • Crozier A, Del Rio D, Clifford MN (2010) Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med 31(6):446–467

    PubMed  CAS  Google Scholar 

  • Dheen ST, Jun Y, Yan Z, Tay SSW, Ling EA (2005) Retinoic acid inhibits expression of TNF-α and iNOS in activated rat microglia. Glia 50(1):21–31

    PubMed  Google Scholar 

  • Dien MV, Kazuko T, Mya MM, Naoki K, Tsuyoshi S, Isamu M, Tomoaki Y, Takashi Y (2001) Protective effect of wogonin on endotoxin-induced lethal shock in d-galactosamine-sensitized mice. Microbiol Immunol 45:751–756

    PubMed  Google Scholar 

  • Dong TTX, Cui XM, Song ZH, Zhao KJ, Ji ZN, Lo CK, Tsim KWK (2003) Chemical assessment of roots of Panax notoginseng in China: regional and seasonal variations in its active constituents. J Agric Food Chem 51(16):4617–4623

    PubMed  CAS  Google Scholar 

  • Duan H, Takaishi Y, Momota H, Ohmoto Y, Taki T, Tori M, Takaoka S, Jia Y, Li D (2001) Immunosuppressive terpenoids from extracts of Tripterygium wilfordii. Tetrahedron 57(40):8413–8424

    CAS  Google Scholar 

  • Ernster VL (1988) Trends in smoking, cancer risk, and cigarette promotion current priorities for reducing tobacco exposure. Cancer 62(S1):1702–1712

    PubMed  CAS  Google Scholar 

  • Fang S-H, Hou Y-C, Chang W-C, Hsiu S-L, Lee Chao P-D, Chiang B-L (2003) Morin sulfates/glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock. Life Sci 74(6):743–756

    PubMed  CAS  Google Scholar 

  • Fang S-H, Rao YK, Tzeng Y-M (2005) Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-γ-activated murine macrophages. Bioorg Med Chem 13(7):2381–2388

    PubMed  CAS  Google Scholar 

  • Fernández-Real JM, Ricart W (1999) Insulin resistance and inflammation in an evolutionary perspective: the contribution of cytokine genotype/phenotype to thriftiness. Diabetologia 42(11):1367–1374

    PubMed  Google Scholar 

  • Fernández-Real JM, Broch M, Ricart W (1998) Plasma levels of the soluble fraction of tumor necrosis factor receptor 2 and insulin resistance. Diabetes 47(11):1757–1762

    Google Scholar 

  • Fernández-Real JM, Gutierrez C, Broch M, Casamitjana R, Vendrell J, Ricart W (1999) The insulin response to intravenous glucose correlates with plasma levels of the tumor necrosis factor receptor-1. Diabetes Care 22(5):868–870

    Google Scholar 

  • Fernández-Real JM, Straczkowski M, Lainez B, Chacón MR, Kowalska I, López-Bermejo A, García-España A, Nikolajuk A, Kinalska I, Ricart W (2006) An alternative spliced variant of circulating soluble tumor necrosis factor-α receptor-2 is paradoxically associated with insulin action. Eur J Endocrinol 154(5):723–730

    PubMed  Google Scholar 

  • Ferrante A, Seow W, Rowan-Kelly B, Thong YH (1990) Tetrandrine, a plant alkaloid, inhibits the production of tumour necrosis factor-α (cachectin) in human monocytes. Clin Exp Immunol 80(2):232–235

    PubMed  CAS  Google Scholar 

  • Georgiou NA, Garssen J, Witkamp RF (2011) Pharma–nutrition interface: the gap is narrowing. Eur J Pharmacol 651(1–3):1–8

    PubMed  CAS  Google Scholar 

  • Giridharan P, Somasundaram S, Perumal K, Vishwakarma RA, Karthikeyan N, Velmurugan R, Balakrishnan A (2002) Novel substituted methylenedioxy lignan suppresses proliferation of cancer cells by inhibiting telomerase and activation of c-myc and caspases leading to apoptosis. Br J Cancer 87(1):98–105

    PubMed  CAS  Google Scholar 

  • Gokhale AB, Damre AS, Kulkarni KR, Saraf MN (2002) Preliminary evaluation of anti-inflammatory and anti-arthritic activity of S. lappa, A. speciosa and A. aspera. Phytomedicine 9(5):433–437

    PubMed  CAS  Google Scholar 

  • Gu W-Z, Brandwein SR (1998) Inhibition of type II collagen-induced arthritis in rats by triptolide. Int J Immunopharmacol 20(8):389–400

    PubMed  CAS  Google Scholar 

  • Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan S-F, Stern D, Mackman N (2001) Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor α expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98(5):1429–1439

    PubMed  CAS  Google Scholar 

  • Han SS, Keum Y-S, Seo H-J, Chun K-S, Lee SS, Surh Y-J (2001) Capsaicin suppresses phorbol ester-induced activation of NF-κB/Rel and AP-1 transcription factors in mouse epidermis. Cancer Lett 164:119–126

    PubMed  CAS  Google Scholar 

  • Haq A, Lobo PI, Al-Tufail M, Rama NR, Al-Sedairy ST (1999) Immunomodulatory effect of Nigella sativa proteins fractionated by ion exchange chromatography. Int J Immunopharmacol 21(4):283–295

    PubMed  CAS  Google Scholar 

  • Harries AD, Baird A, Rhodes J (1982) Non-smoking: a feature of ulcerative colitis. Br Med J 284:706

    CAS  Google Scholar 

  • Hashimoto T, Suganuma M, Fujiki H, Yamada M, Kohno T, Asakawa X (2003) Isolation and synthesis of TNF-α release inhibitors from Fijian kawa (Piper methysticum). Phytomedicine 10(4):309–317

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Ishihara N, Takahashi M, Fujii E, Uenakai K, Masada S, Ichimoto I (1996) A new cytotoxic compound from a water extract of corn. Biosci Biotechnol Biochem 60(7):1115–1117

    PubMed  CAS  Google Scholar 

  • Hayshi Y, Nishikawa Y, Mori H, Tamura H, Matsushita Y-I, Matsui T (1998) Antitumor activity of (10E, 12Z)-9-hydroxy-10, 12-octadecadienoic acid from rice bran. J Ferment Bioengin 86(2):149–153

    Google Scholar 

  • Hazekamp A, Grotenhermen F (2010) Review on clinical studies with cannabis and cannabinoids 2005–2009. Cannabinoids 5:1–21

    Google Scholar 

  • Heller R, Kyung S, Martha AO, Wolfgang HF, David C, Ringold GM (1990) Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. Proc Natl Acad Sci USA 87:6151–6155

    PubMed  CAS  Google Scholar 

  • Heras B, Rodriguez B, Bosca L, Villar AM (2003) Terpenoids: sources, structure elucidation and therapeutic potential in inflammation. Curr Top Med Chem 3(2):171–185

    PubMed  Google Scholar 

  • Herath HMT, Takano-Ishikawa Y, Yamaki K (2003) Inhibitory effect of some flavonoids on tumor necrosis factor-α production in lipopolysaccharide-stimulated mouse macrophage cell line J774.1. J Med Food 6(4):365–370

    PubMed  Google Scholar 

  • Herraiz T, Galisteo J (2003) Tetrahydro-β-carboline alkaloids occur in fruits and fruit juices. Activity as antioxidants and radical scavengers. Agric Food Chem 51(24):7156–7161

    CAS  Google Scholar 

  • Hu FB (2011) Globalization of diabetes: the role of diet, lifestyle and genes. Diabetes Care 34(6):1249–1257

    Google Scholar 

  • Hunt KJ, Walsh BM, Voegeli D, Roberts HC (2010) Inflammation in aging part 1: physiology and immunological mechanisms. Biol Res Nurs 11(3):245–252

    PubMed  CAS  Google Scholar 

  • Jagetia G, Aggarwal B (2007) “Spicing up” of the immune system by curcumin. J Clin Immunol 27(1):19–35

    PubMed  CAS  Google Scholar 

  • Jamwal K, Sharma M, Chandhoke N, BJ G (1972) Pharmacological action of 6,7-dimethoxy coumarin (Scoparone) isolated from Artemisia scoparia, Waldst & Kit. Indian J Med Res 60(5):763–771

    PubMed  CAS  Google Scholar 

  • Jang S-I, Jeong S-I, Kim K-J, Kim H-J, Yu H-H, Park R, Kim H-M, You Y-O (2003) Tanshinone IIA from Salvia miltiorrhiza inhibits inducible nitric oxide synthase expression and production of TNF-α, IL-1β and IL-6 in activated RAW 264.7 cells. Planta Med 69:1057–1059

    PubMed  CAS  Google Scholar 

  • Jang D, Han A-R, Park G, Jhon G-J, Seo E-K (2004) Flavonoids and aromatic compounds from the rhizomes of Zingiber zerumbet. Arch Pharm Res 27(4):386–389

    PubMed  CAS  Google Scholar 

  • Jang SI, Kim Y-J, Lee W-Y, Kwak KC, Baek SH, Kwak GB, Yun Y-G, Kwon T-O, Chung HT, Chai K-Y (2005) Scoparone from Artemisia capillaris inhibits the release of inflammatory mediators in RAW 264.7 cells upon stimulation cells by interferon-γ plus LPS. Eur J Pharmacol 28(2):203–208

    CAS  Google Scholar 

  • Jang S-I, Jin Kim H, Kim Y-J, Jeong S-I, You Y-O (2006) Tanshinone IIA inhibits LPS-induced NF-κB activation in RAW 264.7 cells: possible involvement of the NIK–IKK, ERK1/2, p38 and JNK pathways. Eur J Pharmacol 542(1–3):1–7

    PubMed  CAS  Google Scholar 

  • Jeong H-J, Koo H-N, Na H-J, Kim M-S, Hong S-H, Eom J-W, Kim K-S, Shin T-Y, Kim H-M (2002) Inhibition of TNF-α and IL-6 production by aucubin through blockade of NF-κB activation in RBL-2H3 mast cells. Cytokine 18(5):252–259

    PubMed  CAS  Google Scholar 

  • Jiang R-W, Lau K-M, Hon P-M, Mak TC, Woo K-S, Fung K-P (2005) Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr Med Chem 12(2):237–246

    PubMed  CAS  Google Scholar 

  • Jiang W-L, Chen X-G, Zhu H-B, Gao Y-B, Tian J-W, Fu F-H (2009) Paeoniflorin inhibits systemic inflammation and improves survival in experimental sepsis. Basic Clin Pharmacol Toxicol 105(1):64–71

    PubMed  CAS  Google Scholar 

  • Jin M, Lee H, Ryu J, Chung K (2000) Inhibition of LPS-induced NO production and NF-κB activation by a sesquiterpene from Saussurea lappa. Arch Pharm Res 23(1):54–58

    PubMed  CAS  Google Scholar 

  • Jones EY, Stuart DI, Walker NPC (1989) Structure of tumour necrosis factor. Nature 338(6212):225–228

    PubMed  CAS  Google Scholar 

  • Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW (2001) Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276(14):11199–11203

    PubMed  CAS  Google Scholar 

  • Ju HK, Baek S-H, An R-B, Bae K, Son KH, Kim HP, Kang SS, Lee SH, Son JK, Chang HW (2003) Inhibitory effects of nardostachin on nitric oxide, prostaglandin E2, and tumor necrosis factor-α production in lipopolysaccharide activated macrophages. Biol Pharm Bull 26:1375–1378

    PubMed  CAS  Google Scholar 

  • Jung CH, Kim JH, Hong MH, Seog HM, Oh SH, Lee PJ, Kim GJ, Kim HM, Um JY, Ko S-G (2007) Phenolic-rich fraction from Rhus verniciflua Stokes (RVS) suppresses inflammatory response via NF-κB and JNK pathway in lipopolysaccharide-induced RAW 264.7 macrophages. J Ethnopharmacol 110(3):490–497

    PubMed  Google Scholar 

  • Kang H-S, Kim Y-H, Lee C-S, Lee J-J, Choi I, Pyun K-H (1996) Suppression of interleukin-1 and tumor necrosis factor-α production by acanthoic acid, (−)-pimara-9(11), 15-dien-19-oic acid, and its antifibrotic effects in vivo. Cell Immunol 170(2):212–221

    PubMed  CAS  Google Scholar 

  • Kang T-H, Pae H-O, Jeong S-J, Yoo J-C, Choi B-M, Jun C-D, Chung H-T, Miyamoto T, Higuchi R, Kim Y-C (1999) Scopoletin: An inducible nitric oxide synthesis inhibitory active constituent from Artemisia feddei. Planta Med 65(5):400–403

    PubMed  CAS  Google Scholar 

  • Kang O-H, Kim D-K, Cai X-F, Kim Y-H, Lee Y-M (2010) Attenuation of experimental murine colitis by acanthoic acid from Acanthopanax koreanum. Arch Pharm Res 33(1):87–93

    PubMed  CAS  Google Scholar 

  • Kang O-H, Lee J-H, Kwon D-Y (2011) Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in the HMC-1 cells. Immunopharmacol Immunotoxicol 33(3):473–479

    PubMed  CAS  Google Scholar 

  • Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124(4):823–835

    PubMed  CAS  Google Scholar 

  • Khanna D, Sethi G, Ahn KS, Pandey MK, Kunnumakkara AB, Sung B, Aggarwal A, Aggarwal BB (2007) Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 7(3):344–351

    PubMed  CAS  Google Scholar 

  • Kim BH, Cho JY (2008) Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression1. Acta Pharmacol Sin 29(1):113–122

    PubMed  CAS  Google Scholar 

  • Kim H, Kim YS, Kim SY, Suk K (2001) The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci Lett 309(1):67–71

    PubMed  CAS  Google Scholar 

  • Kim C-S, Kawada T, Kim B-S, Han I-S, Choe S-Y, Kurata T, Yu R (2003) Capsaicin exhibits anti-inflammatory property by inhibiting IkB-α degradation in LPS-stimulated peritoneal macrophages. Cell Signal 15(3):299–306

    PubMed  CAS  Google Scholar 

  • Kim H-J, Jang SI, Kim Y-J, Chung H-T, Yun Y-G, Kang T-H, Jeong O-S, Kim Y-C (2004a) Scopoletin suppresses pro-inflammatory cytokines and PGE2 from LPS-stimulated cell line, RAW 264.7 cells. Fitoterapia 75(3–4):261–266

    PubMed  CAS  Google Scholar 

  • Kim HP, Son KH, Chang HW, Kang SS (2004b) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharm Sci 96:229–254

    CAS  Google Scholar 

  • Kim J-A, Kim D-K, Jin T, Kang O-H, Choi Y-A, Choi S-C, Kim T-H, Nah Y-H, Choi S-J, Kim Y-H, Bae K-H, Lee Y-M (2004c) Acanthoic acid inhibits IL-8 production via MAPKs and NF-κB in a TNF-α-stimulated human intestinal epithelial cell line. Clin Chim Acta 342(1–2):193–202

    PubMed  CAS  Google Scholar 

  • Kim YH, Chung BS, Sankawa U (2004d) Pimaradiene diterpenes from Acanthopanax koreanum. J Nat Prod 51(6):1080–1083

    Google Scholar 

  • Kim H, Park H, Lee J, Chung T, Chung H, Chung J (2007) Down-regulation of iNOS and TNF-α expression by kaempferol via NF-κB inactivation in aged rat gingival tissues. Biogerontology 8(4):399–408

    PubMed  CAS  Google Scholar 

  • Kim JY, Lim HJ, Lee DY, Kim JS, Kim DH, Lee HJ, Kim HD, Jeon R, Ryu J-H (2009) In vitro anti-inflammatory activity of lignans isolated from Magnolia fargesii. J Med Chem 19(3):937–940

    CAS  Google Scholar 

  • Kishore R, McMullen M, Cocuzzi E, Nagy L (2004) Lipopolysaccharide-mediated signal transduction: stabilization of TNF-α mRNA contributes to increased lipopolysaccharide-stimulated TNF-α production by kupffer cells after chronic ethanol feeding. Comp Hepatol 3(Suppl 1):S31

    PubMed  Google Scholar 

  • Ko F-N, Huang T-F, Teng C-M (1991) Vasodilatory action mechanisms of apigenin isolated from Apium graveolens in rat thoracic aorta. BBA-Gen Subj 1115(1):69–74

    CAS  Google Scholar 

  • Kobori M, Yoshida M, Ohnishi-Kameyama M, Shinmoto H (2007) Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br J Pharmacol 150(2):209–219

    PubMed  CAS  Google Scholar 

  • Koch E, Klaas CA, Rüngeler P, Castro V, Mora G, Vichnewski W, Merfort I (2001) Inhibition of inflammatory cytokine production and lymphocyte proliferation by structurally different sesquiterpene lactones correlates with their effect on activation of NF-κB. Biochem Pharmacol 62(6):795–801

    PubMed  CAS  Google Scholar 

  • Kotanidou A, Xagorari A, Bagli E, Kitsanta P, Fotsis T, Papapetropoulos A, Roussos C (2002) Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. Am J Respir Crit Care Med 165(6):818–823

    PubMed  Google Scholar 

  • Kotyla P (2010) The role of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) in modern rheumatology. Ther Adv Musculoskelet Dis 2(5):257–269

    PubMed  CAS  Google Scholar 

  • Kubo M, Matsuda H, Tanaka M, Kimura Y, Okuda H, Tani T, Namba K, Arichi S (1984) Studies on Scutellariae radix. VII. Anti-arthritic and anti-inflammatory actions of methanolic extract and flavonoid components from Scutellariae radix. Chem Pharm Bull (Tokyo) 32(7):2724–2729

    CAS  Google Scholar 

  • Kuhnau J (1976) The flavonoids: a class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 24:117–191

    PubMed  CAS  Google Scholar 

  • Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF (1997) A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. JAMA 278(16):1327–1332

    PubMed  CAS  Google Scholar 

  • Lee T (1980) Illstrated flora of Korea. Hyang Mun Sa, Seoul, p 714

    Google Scholar 

  • Lee J (2011) Anti-inflammatory effects of eriodictyol in lipopolysaccharide stimulated raw 264.7 murine macrophages. Arch Pharm Res 34(4):671–679

    PubMed  CAS  Google Scholar 

  • Lee HJ, Kim NY, Jang MK, Son HJ, Kim KM, Sohn DH, Lee SH, Ryu J-H (1999) A sesquiterpene, dehydrocostus lactone, inhibits the expression of inducible nitric oxide synthase and TNF-α in LPS-activated macrophages. Planta Med 65(02):104–108

    PubMed  CAS  Google Scholar 

  • Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, Cho GJ, Choi WS, Suk K (2003) Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J 17(13):1943–1944

    PubMed  CAS  Google Scholar 

  • Li Q, Zhou XD, Kolosov VP, Perelman JM (2011) Nicotine reduces TNF-α expression through a α7 nAChR/MyD88/NF-κB pathway in HBE16 airway epithelial cells. Cell Physiol Biochem 27(5):605–612

    PubMed  Google Scholar 

  • Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    PubMed  CAS  Google Scholar 

  • Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, Finberg RW, Ingalls RR, Golenbock DT (2000) Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105(4):497–504

    PubMed  CAS  Google Scholar 

  • Ling WH, Jones PJH (1995) Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci 57(3):195–206

    PubMed  CAS  Google Scholar 

  • Lommen A, Godejohann M, Venema DP, Hollman PCH, Spraul M (2000) Application of directly coupled HPLC–NMR–MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal Chem 72(8):1793–1797

    PubMed  CAS  Google Scholar 

  • Lu X-y, Zeng Y-y, Ye Y-x, Zhou Y-y, Mu J-j, Zhao X-h (2009) Anti-inflammatory and immunosuppressive effect of phloretin. Acta Paediatr Sin 44(5):480–485

    CAS  Google Scholar 

  • Luqman S, Pezzuto JM (2010) NFκB: a promising target for natural products in cancer chemoprevention. Phytother Res 24(7):949–963

    PubMed  CAS  Google Scholar 

  • Ma WG, Mizutani M, Malterud KE, Lu SL, Ducrey B, Tahara S (1999) Saponins from the roots of Panax notoginseng. Phytochemistry 52(6):1133–1139

    CAS  Google Scholar 

  • Madretsma G, Donze G, Van Dijk APM, Tak CJAM, Wilson JHP, Zijlstra FJ (1996) Nicotine inhibits the in vitro production of interleukin 2 and tumour necrosis factor-α by human mononuclear cells. Immunopharmacol 35(1):47–51

    CAS  Google Scholar 

  • Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R, Feldmann M (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. PNAS 97(17):9561–9566

    PubMed  CAS  Google Scholar 

  • Manjula N, Gayathri B, Vinaykumar KS, Shankernarayanan NP, Vishwakarma RA, Balakrishnan A (2006) Inhibition of MAP kinases by crude extract and pure compound isolated from Commiphora mukul leads to down regulation of TNF-α, IL-1β and IL-2. Int Immunopharmacol 6(2):122–132

    PubMed  CAS  Google Scholar 

  • Manthey JA, Grohmann K, Montanari A, Ash K, Manthey CL (1999) Polymethoxylated flavones derived from Citrus suppress tumor necrosis factor xpression by human monocytes. J Nat Prod 62(3):441–444

    PubMed  CAS  Google Scholar 

  • Mechoulam R, Gaoni Y (1967) Recent advances in the chemistry of hashish. Fortschr Chem Org Naturst 25:175–213

    PubMed  CAS  Google Scholar 

  • Medana I, Hunt N, Chaudhri G (1997) Tumor necrosis factor expression in the brain during fatal murine cerebral malaria. Am J Pathol 150(4):1473–1486

    PubMed  CAS  Google Scholar 

  • Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49(6):3106–3112

    PubMed  CAS  Google Scholar 

  • Min S-W, Ryu S-N, Kim D-H (2010) Anti-inflammatory effects of black rice, cyanidin-3-O-β-d-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int Immunopharmacol 10(8):959–966

    PubMed  CAS  Google Scholar 

  • Miyake Y, Shimoi K, Kumazawa S, Yamamoto K, Kinae N, Osawa T (2000) Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. J Agric Food Chem 48(8):3217–3224

    PubMed  CAS  Google Scholar 

  • Moon P-D, Lee B-H, Jeong H-J, An H-J, Park S-J, Kim H-R, Ko S-G, Um J-Y, Hong S-H, Kim H-M (2007) Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the IκB/NF-κB signal cascade in the human mast cell line HMC-1. Eur J Pharmacol 555(2–3):218–225

    PubMed  CAS  Google Scholar 

  • Moreira A, Sampaio E, Zmuidzinas A, Frindt P, Smith K, Kaplan G (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor-α by enhancing mRNA degradation. J Exp Med 177(6):1675–1680

    PubMed  CAS  Google Scholar 

  • Morikawa K, Nonaka M, Narahara M, Torii I, Kawaguchi K, Yoshikawa T, Kumazawa Y, Morikawa S (2003) Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci 74(6):709–721

    PubMed  CAS  Google Scholar 

  • Moss ML, Jin SLC, Milla ME, Burkhart W, Carter HL, Chen W-J, Clay WC, Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGeehan G, Mitchell J, Moyer M, Pahel G, Rocque W, Overton LK, Schoenen F, Seaton T, Su J-L, Warner J, Willard D, Becherer JD (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumor necrosis factor-α. Nature 385(6618):733–736

    PubMed  CAS  Google Scholar 

  • Mrowietz U, Jessat H, Schwarz A, Schwarz T (1997) Anthralin (dithranol) in vitro inhibits human monocytes to secrete IL-6, IL-8 and TNF-α, but not IL-1. Br J Dermatol 136(4):542–547

    PubMed  CAS  Google Scholar 

  • Murakami A, Takahashi D, Kinoshita T, Koshimizu K, Kim HW, Yoshihiro A, Nakamura Y, Jiwajinda S, Terao J, Ohigashi H (2002) Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the α, β-unsaturated carbonyl group is a prerequisite. Carcinogenesis 23(5):795–802

    PubMed  CAS  Google Scholar 

  • Murakami A, Nishizawa T, Egawa K, Kawada T, Nishikawa Y, Uenakai K, Ohigashi H (2005) New class of linoleic acid metabolites biosynthesized by corn and rice lipoxygenases: suppression of proinflammatory mediator expression via attenuation of MAPK- and Akt-, but not PPAR-γ- dependent pathways in stimulated macrophages. Biochem Pharmacol 70(9):1330–1342

    Google Scholar 

  • Murphy K, Haudek SB, Thompson M, Giroir BP (1998) Molecular biology of septic shock. New Horiz 6(2):181–193

    PubMed  CAS  Google Scholar 

  • Nagata S, Golstein P (1995) The Fas death factor. Science 267(5203):1449–1456

    PubMed  CAS  Google Scholar 

  • Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA, Kandaswami C (2006) The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor α) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-κB system. Clin Vaccine Immunol 13(3):319–328

    PubMed  CAS  Google Scholar 

  • Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI (2007) Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-κB through the suppression of p65 phosphorylation. J Immunol 179(10):7121–7127

    PubMed  CAS  Google Scholar 

  • Okamoto M, Kita T, Okuda H, Tanaka T, Nakashima T (1994) Effects of aging on acute toxicity of nicotine in rats. Pharmacol Toxicol 75(1):1–6

    PubMed  CAS  Google Scholar 

  • Old L (1985) Tumor necrosis factor (TNF). Science 230(4726):630–632

    PubMed  CAS  Google Scholar 

  • Onai N, Tsunokawa Y, Suda M, Watanabe N, Nakamura K, Yukihiro S, Yoshiro K (1995) Inhibitory effects of bisbenzylisoquinoline alkaloids on induction of pro-inflammatory cytokines, interleukin-1 and tumor necrosis factor-α. Planta Med 61(6):497–501

    PubMed  CAS  Google Scholar 

  • Pae HO, Jeong GS, Kim HS, Woo W, Rhew H, Kim H, Sohn D, Kim YC, Chung HT (2007) Costunolide inhibits production of tumor necrosis factor-α and interleukin-6 by inducing heme oxygenase-1 in RAW264.7 macrophages. Inflamm Res 56(12):520–526

    PubMed  CAS  Google Scholar 

  • Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL (2003) Anti-TNF-α therapies: the next generation. Nat Rev Drug Discov 2(9):736–746

    PubMed  CAS  Google Scholar 

  • Park BK, Heo MY, Park H, Kim HP (2001) Inhibition of TPA-induced cyclooxygenase-2 expression and skin inflammation in mice by wogonin, a plant flavone from Scutellaria radix. Eur J Pharmacol 425(2):153–157

    PubMed  CAS  Google Scholar 

  • Park J-Y, Kawada T, Han I-S, Kim B-S, Goto T, Takahashi N, Fushiki T, Kurata T, Yu R (2004) Capsaicin inhibits the production of tumor necrosis factor α by LPS-stimulated murine macrophages, RAW 264.7: a PPARγ ligand-like action as a novel mechanism. FEBS Lett 572(1–3):266–270

    PubMed  CAS  Google Scholar 

  • Pelkonen O, Pasanen M, Lindon JC, Chan K, Zhao L, Deal G, Xu Q, Fan T-P (2012) Omics and its potential impact on R&D and regulation of complex herbal products. J Ethnopharmacol 140(3):587–593

    PubMed  CAS  Google Scholar 

  • Philippe RJ, Franck S, Pierre DA (1996) EGb 761 in control of acute mountain sickness and vascular reactivity to cold exposure. Aviat Space Environ Med 67(5):445–452

    Google Scholar 

  • Pollastri MP, Whitty A, Merrill JC, Tang X, Ashton TD, Amar S (2009) Identification and characterization of Kava-derived compounds mediating TNF-α suppression. Chem Biol Drug Des 74(2):121–128

    PubMed  CAS  Google Scholar 

  • Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B (2000) Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. PNAS 97(5):2163–2167

    PubMed  CAS  Google Scholar 

  • Pradeep CR, Kuttan G (2003) Effect of piperine on the inhibition of nitric oxide (NO) and TNF-α production. Immunopharmacol Immunotoxicol 25(3):337–346

    PubMed  CAS  Google Scholar 

  • Pullan RD, Rhodes J, Ganesh S, Mani V, Morris JS, Williams GT, Newcombe RG, Russell M, Feyerabend C, Thomas G, Sawe U (1994) Transdermal nicotine for active ulcerative colitis. N Engl J Med 330(12):811–815

    PubMed  CAS  Google Scholar 

  • Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:655–700

    Google Scholar 

  • Rao P, Hayden MS, Long M, Scott ML, West AP, Zhang D, Oeckinghaus A, Lynch C, Hoffmann A, Baltimore D, Ghosh S (2010) IκBβ acts to inhibit and activate gene expression during the inflammatory response. Nature 466(7310):1115–1119

    PubMed  CAS  Google Scholar 

  • Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K (2009) Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets 8(3):229–235

    PubMed  CAS  Google Scholar 

  • Ratty A, Das N (1988) Effects of flavonoids on nonenzymatic lipid peroxidation: structure–activity relationship. Biochem Med Metabol Biol 39(1):69–79

    CAS  Google Scholar 

  • Ryu J-H, Ja Son H, Hyun Lee S, Hwan Sohn D (2002) Two neolignans from Perilla frutescens and their inhibition of nitric oxide synthase and tumor necrosis factor-α expression in murine macrophage cell line RAW 264.7. Bioorg Med Chem Lett 12(4):649–651

    PubMed  CAS  Google Scholar 

  • Saleem M, Kim HJ, Ali MS, Lee YS (2005) An update on bioactive plant lignans. Nat Prod Rep 22(6):696–716

    PubMed  CAS  Google Scholar 

  • Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J (2008) Terpenoids: natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci 65(19):2979–2999

    PubMed  CAS  Google Scholar 

  • Salomi N, Nair S, Jayawardhanan K, Varghese C, Panikkar K (1992) Antitumour principles from Nigella sativa seeds. Cancer Lett 63(1):41–46

    PubMed  CAS  Google Scholar 

  • Sampaio-Santos MI, Kaplan MAC (2001) Biosynthesis significance of iridoids in chemosystematics. J Braz Chem Soc 12(2):144–153

    CAS  Google Scholar 

  • Sarkar D, Fisher PB (2006) Molecular mechanisms of aging-associated inflammation. Cancer Lett 236(1):13–23

    PubMed  CAS  Google Scholar 

  • Sarkar FH, Li Y (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21(3):265–280

    PubMed  CAS  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A, Tamura K-I, Choi K-B, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. PNAS 98(1):367–372

    PubMed  CAS  Google Scholar 

  • Satoh H, Nishida S (2004) Electropharmacological actions of Ginkgo biloba extract on vascular smooth and heart muscles. Clin Chim Acta 342(1–2):13–22

    PubMed  CAS  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S–2085S

    PubMed  CAS  Google Scholar 

  • Scheinfeld N (2004) A comprehensive review and evaluation of the side effects of the tumor necrosis factor α blockers etanercept, infliximab and adalimumab. J Dermatol Treat 15(5):280–294

    CAS  Google Scholar 

  • Schmidt AH, Molnar I (2002) Computer-assisted optimization in the development of a high-performance liquid chromatographic method for the analysis of kava pyrones in Piper methysticum preparations. J Chromatogr 948(1–2):51–63

    CAS  Google Scholar 

  • Sekut L, Connolly K (1996) Pathophysiology and regulation of TNF-in inflammation. Drug News Prospect 9:261–269

    CAS  Google Scholar 

  • Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57(15):6485–6501

    PubMed  CAS  Google Scholar 

  • Sethi G, Ahn KS, Aggarwal BB (2008) Targeting nuclear factor-κB activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res 6(6):1059–1070

    PubMed  CAS  Google Scholar 

  • Shanmugam K, Holmquist L, Steele M, Stuchbury G, Berbaum K, Schulz O, Benavente García O, Castillo J, Burnell J, Garcia Rivas V, Dobson G, Münch G (2008) Plant-derived polyphenols attenuate lipopolysaccharide-induced nitric oxide and tumour necrosis factor production in murine microglia and macrophages. Mol Nutr Food Res 52(4):427–438

    PubMed  CAS  Google Scholar 

  • Son HJ, Lee HJ, Yun-Choi HS, Ryu J-H (2000) Inhibitors of nitric oxide synthesis and TNF-α expression from Magnolia obovata in activated macrophages. Planta Med 66(05):469–471

    PubMed  CAS  Google Scholar 

  • Sugano N, Shimada K, Ito K, Murai S (1998) Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kB activation. Biochem Biophys Res Commun 252(1):25–28

    PubMed  CAS  Google Scholar 

  • Swatsitang P, Tucker G, Robards K, Jardine D (2000) Isolation and identification of phenolic compounds in Citrus sinensis. Anal Chim Acta 417(2):231–240

    CAS  Google Scholar 

  • Takahashi K, Morikawa A, Kato Y, Sugiyama T, Koide N, Mu MM, Yoshida T, Yokochi T (2001) Flavonoids protect mice from two types of lethal shock induced by endotoxin. FEMS Immunol Med Microbiol 31(1):29–33

    PubMed  CAS  Google Scholar 

  • Takahashi N, Kawada T, Goto T, Kim C-S, Taimatsu A, Egawa K, Yamamoto T, Jisaka M, Nishimura K, Yokota K, Yu R, Fushiki T (2003) Abietic acid activates peroxisome proliferator-activated receptor-γ (PPARγ) in RAW264.7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism. FEBS Lett 550(1–3):190–194

    PubMed  CAS  Google Scholar 

  • Tracey KJ, Cerami A (1994) Tumor necrosis factor: a pleiotropic cytokine and therapuetic target. Annu Rev Med 45(1):491–503

    PubMed  CAS  Google Scholar 

  • Tran SEF, Holmström TH, Ahonen M, Kähäri V-M, Eriksson JE (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 276(19):16484–16490

    PubMed  CAS  Google Scholar 

  • Tsai H-Y, Lin H-Y, Fong Y-C, Wu J-B, Chen Y-F, Tsuzuki M, Tang C-H (2008) Paeonol inhibits RANKL-induced osteoclastogenesis by inhibiting ERK, p38 and NF-κB pathway. Eur J Pharmacol 588(1):124–133

    PubMed  CAS  Google Scholar 

  • Tse AK-W, Wan C-K, Shen X-L, Yang M, Fong W-F (2005) Honokiol inhibits TNF-α-stimulated NF-κB activation and NF-κB-regulated gene expression through suppression of IKK activation. Biochem Pharmacol 70(10):1443–1457

    PubMed  CAS  Google Scholar 

  • Ueda H, Yamazaki C, Yamazaki M (2002) Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol Pharm Bull 25(9):1197–1202

    PubMed  CAS  Google Scholar 

  • Ueda H, Yamazaki C, Yamazaki M (2004) A hydroxyl group of flavonoids affects oral anti-inflammatory activity and inhibition of systemic tumor necrosis factor-α production. Biosci Biotechnol Biochem 68:119–125

    PubMed  CAS  Google Scholar 

  • Umar S, Zargan J, Ahmad S, Katiyar CK, Khan HA (2012) Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in wistar rats. Chem Biol Interact 197(1):40–46

    PubMed  CAS  Google Scholar 

  • Vafeiadou K, Vauzour D, Lee HY, Rodriguez-Mateos A, Williams RJ, Spencer JPE (2009) The Citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch Biochem Biophys 484(1):100–109

    PubMed  CAS  Google Scholar 

  • van der Greef J (2011) Perspective: all systems go. Nature 480(7378):S87. doi:10.1038/480S87a

    PubMed  Google Scholar 

  • van der Greef J, McBurney RN (2005) Rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nat Rev Drug Discov 4(12):961–967

    PubMed  Google Scholar 

  • van der Greef J, Hankemeier T, McBurney RN (2006) Metabolomics-based systems biology and personalized medicine: moving towards n = 1 clinical trials? Pharmacogenomics 7(7):1087–1094

    PubMed  Google Scholar 

  • van Duijn CM, Hofman A (1991) Relation between nicotine intake and Alzheimer’s disease. BMJ 302(6791):1491–1494

    PubMed  Google Scholar 

  • Verhoeckx KCM, Korthout HAAJ, van Meeteren-Kreikamp AP, Ehlert KA, Wang M, van der Greef J, Rodenburg RJT, Witkamp RF (2006) Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways. Int Immunopharmacol 6(4):656–665

    PubMed  CAS  Google Scholar 

  • Verpoorte R (2012) Good practices: the basis for evidence-based medicines. J Ethnopharmacol 140(3):455–457

    PubMed  Google Scholar 

  • Verpoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgenic Res 9(4):323–343

    PubMed  CAS  Google Scholar 

  • Verpoorte R, Choi YH, Kim HK (2005) Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol 100(1–2):53–56

    PubMed  CAS  Google Scholar 

  • Wadsworth TL, McDonald TL, Koop DR (2001) Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-α. Biochem Pharmacol 62(7):963–974

    PubMed  CAS  Google Scholar 

  • Wang M, Li J, Ho GS, Peng X, Ho CT (1998) Isolation and identification of antioxidative flavonoid glycosides from thyme (Thymus Vulgaris L.). J Food Lipids 5(4):313–321

    CAS  Google Scholar 

  • Wang X, Wang Y, Geng Y, Li F, Zheng C (2004) Isolation and purification of honokiol and magnolol from cortex Magnoliae officinalis by high-speed counter-current chromatography. J Chromatogr A 1036(2):171–175

    PubMed  CAS  Google Scholar 

  • Wang G, Tang W, Bidigare RR (2005a) Terpenoids as therapeutic drugs and pharmaceutical agents. In: Zhang L, Demain AL (eds) Natural products. Humana Press, New York, pp 197–227

    Google Scholar 

  • Wang M, Lamers R-JAN, Korthout HAAJ, van Nesselrooij JHJ, Witkamp RF, van der Heijden R, Voshol PJ, Havekes LM, Verpoorte R, van der Greef J (2005b) Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 19(3):173–182

    PubMed  CAS  Google Scholar 

  • Wenyan X, Jiarun Z, Xueyu L (1985) Tripterygium in dermatologic therapy. Int J Dermatol 24(1):152–157

    Google Scholar 

  • Wilcox LJ, Borradaile NM, Huff MW (1999) Antiatherogenic properties of naringenin, a Citrus flavonoid. Cardiovasc Drugs Rev 17(2):160–178

    CAS  Google Scholar 

  • Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr 104:48–66

    Google Scholar 

  • Wu M, Gu Z (2009) Screening of bioactive compounds from Moutan cortex and their anti-Inflammatory activities in rat synoviocytes. eCAM 6(1):57–63

    PubMed  Google Scholar 

  • Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X (2007) Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int Immunopharmacol 7(3):313–320

    PubMed  CAS  Google Scholar 

  • Wu F, Zhang W, Li L, Zheng F, Shao X, Zhou J, Li H (2011) Inhibitory effects of honokiol on lipopolysaccharide-induced cellular responses and signaling events in human renal mesangial cells. Eur J Pharmacol 654(1):117–121

    PubMed  CAS  Google Scholar 

  • Xagorari A, Papapetropoulos A, Mauromatis A, Economou M, Fotsis T, Roussos C (2001) Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther 296(1):181–187

    PubMed  CAS  Google Scholar 

  • Xagorari A, Roussos C, Papapetropoulos A (2002) Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. Br J Pharmacol 136(7):1058–1064

    PubMed  CAS  Google Scholar 

  • Xie C, Kang J, Li Z, Schauss AG, Badger TM, Nagarajan S, Wu T, Wu X (2012) The açaí flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway. J Nutr Biochem 23(9):1184–1191

    Google Scholar 

  • Yahara S, Satoshiro M, Nishioka I, Nagasawa T, Oura H (1985) Isolation and characterization of phenolic compounds from Coptidis rhizoma. Chem Pharm Bull 33(2):527–531

    CAS  Google Scholar 

  • Yang F, de Villiers WJS, McClain CJ, Varilek GW (1998) Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J Nutr 128(12):2334–2340

    PubMed  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    PubMed  CAS  Google Scholar 

  • Yudkin JS, Stehouwer CDA, Emeis JJ, Coppack SW (1999) C-Reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 19(4):972–978

    PubMed  CAS  Google Scholar 

  • Yui S, Mikami M, Mimaki Y, Sashida Y, Yamazaki M (2001) Inhibition effect of Amaryllidaceae alkaloids, lycorine and lycoricidinol on macrophage TNF-α production. J Pharm Soc Jap 121(2):167–171

    CAS  Google Scholar 

  • Yuliana ND, Iqbal M, Jahangir M, Wijaya CH, Korthout H, Kottenhage M, Kim HK, Verpoorte R (2011a) Screening of selected Asian spices for anti obesity-related bioactivities. Food Chem 126(4):1724–1729

    CAS  Google Scholar 

  • Yuliana ND, Khatib A, Verpoorte R, Choi YH (2011b) Comprehensive extraction method integrated with NMR metabolomics: a new bioactivity screening method for plants, adenosine A1 receptor binding compounds in Orthosiphon stamineus Benth. Anal Chem 83(17):6902–6906

    PubMed  CAS  Google Scholar 

  • Zhang W-J, Wojta J, Binder BR (1997) Notoginsenoside R1 counteracts endotoxin-induced activation of endothelial cells in vitro and endotoxin-induced lethality in mice in vivo. Arterioscler Thromb Vasc Biol 17(3):465–474

    PubMed  CAS  Google Scholar 

  • Zhao G, Etherton TD, Martin KR, Vanden Heuvel JP, Gillies PJ, West SG, Kris-Etherton PM (2005) Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun 336(3):909–917

    PubMed  CAS  Google Scholar 

  • Zhao F, Wang L, Liu K (2009) In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J Ethnopharmacol 122(3):457–462

    PubMed  CAS  Google Scholar 

  • Zhong L-M, Zong Y, Sun L, Guo J-Z, Zhang W, He Y, Song R, Wang W-M, Xiao C-J, Lu D (2012) Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS ONE 7(2):e32195

    PubMed  CAS  Google Scholar 

  • Zhou L, Zheng G, Gan F, Wang S, Yang C, Xu C (1991) Separation and identification of main medicinal saponin components from mass cell cultures of Panax notoginseng (Burk) F. H. Chen. Yao Xue Xue Bao 26(11):876–880

    PubMed  CAS  Google Scholar 

  • Zhou H-F, Niu D-B, Xue B, Li F-Q, Liu X-Y, He Q-H, Wang X-H, Wang X-MCA (2003) Triptolide inhibits TNF-α, IL-1β and NO production in primary microglial cultures. NeuroReport 14(7):1091–1095

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Higher Education Commission (HEC) of Pakistan & Smart Mix Programme of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science for the support of Muzamal Iqbal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natali Rianika Mustafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, M., Verpoorte, R., Korthout, H.A.A.J. et al. Phytochemicals as a potential source for TNF-α inhibitors. Phytochem Rev 12, 65–93 (2013). https://doi.org/10.1007/s11101-012-9251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-012-9251-7

Keywords

Navigation