Photosynthetica 2017, 55(4):630-637 | DOI: 10.1007/s11099-016-0682-z

Overexpression of calmodulin gene fragment from Antarctic notothenioid fish improves chilling tolerance in Nicotiana benthamiana

T. J. Zhang1, L. J. Pan1, Q. Huang1, L. H. Zhu1, N. Yang1, C. L. Peng1,*, L. B. Chen2,*
1 Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
2 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China

Calmodulin (CaM) is a highly conserved calcium sensor protein associated with chilling tolerance in living organisms. It has four EF-hand domains for binding of four Ca2+, two of them located in the N-terminus, and the other two in the C-terminus. A notothenioid CaM gene fragment (CaMm), which only codes for N-terminus of CaM (with two EF-hand domains), was introduced into Nicotiana benthamiana. Effects of its overexpression on chilling tolerance in plants were explored. During 4◦C or 0◦C chilling treatment, both CaMm and CaM transgenic plants showed higher PSII maximum quantum yield, actual quantum yield, and soluble protein content, lower electrolyte leakage and malondialdehyde content than that of the control. The changes in these physiological indices were comparable between the CaMm and CaM transgenic plants during the treatments. These results indicate that the N-terminus of calmodulin is likely the key functional domain involved in the adaptive response to cold stress.

Additional key words: calcium-binding protein; chilling stress; chlorophyll fluorescence; electrolyte leakage; transgenic plants

Received: July 3, 2016; Accepted: October 10, 2016; Published: December 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhang, T.J., Pan, L.J., Huang, Q., Zhu, L.H., Yang, N., Peng, C.L., & Chen, L.B. (2017). Overexpression of calmodulin gene fragment from Antarctic notothenioid fish improves chilling tolerance in Nicotiana benthamiana. Photosynthetica55(4), 630-637. doi: 10.1007/s11099-016-0682-z
Download citation

References

  1. Alam B., Jacob J.: Overproduction of photosynthetic electrons is associated with chilling injury in green leaves. - Photosynthetica 40: 91-95, 2002. Go to original source...
  2. An G.: Binary ti vectors for plant transformation and promoter analysis. - Method Enzymol. 153: 292-305, 1987. Go to original source...
  3. Arnold K., Bordoli L., Kopp J. et al.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. - Bioinformatics 22: 195-201, 2006. Go to original source...
  4. Babu Y.S., Sack J.S., Greenhough T.J. et al.: Three-dimensional structure of calmodulin. - Nature 315: 37-40, 1985. Go to original source...
  5. Bates L., Waldren R., Teare I. et al.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  6. Batistiè O., Kudla J.: Analysis of calcium signaling pathways in plants. - Biochim. Biophys. Acta 1820: 1283-1293, 2012. Go to original source...
  7. Bauer P., Elbaum R., Weiss I.M.: Calcium and silicon mineralization in land plants: Transport, structure and function. - Plant Sci. 180: 746-756, 2011. Go to original source...
  8. Benkert P., Biasini M., Schwede T.: Toward the estimation of the absolute quality of individual protein structure models. - Bioinformatics 27: 343-350, 2011. Go to original source...
  9. Biasini M., Bienert S., Waterhouse A. et al.: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information.-Nucleic Acids Res. 42: W252-W258, 2014. Go to original source...
  10. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  11. Carafoli E., Santella L., Branca D. et al.: Generation, control, and processing of cellular calcium signals. - Crit. Rev. Biochem. Mol. 36: 107-260, 2001. Go to original source...
  12. Chen Z., Cheng C.-H.C., Zhang J. et al.: Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. - P. Natl. Acad. Sci. USA 105: 12944-12949, 2008. Go to original source...
  13. Doherty C.J., van Buskirk H.A., Myers S.J. et al.: Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. - Plant Cell 21: 972-984, 2009. Go to original source...
  14. Faas G.C., Raghavachari S., Lisman J.E. et al.: Calmodulin as a direct detector of Ca2+ signals. - Nat. Neurosci. 14: 301-304, 2011. Go to original source...
  15. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  16. Graham D., Patterson B.D.: Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. - Annu. Rev. Plant Phys. 33: 347-372, 1982. Go to original source...
  17. Johnson J.D., Snyder C., Walsh M. et al.: Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N-and Cterminal Ca2+ binding sites of calmodulin. - J. Biol. Chem. 271: 761-767, 1996. Go to original source...
  18. Keen J.E., Khawaled R., Farrens D.L. et al.: Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels. - J. Neurosci. 19: 8830-8838, 1999. Go to original source...
  19. Kink J.A., Maley M.E., Preston R.R. et al.: Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. - Cell 62: 165-174, 1990. Go to original source...
  20. Knight M.R., Knight H.: Low-temperature perception leading to gene expression and cold tolerance in higher plants. - New Phytol. 195: 737-751, 2012. Go to original source...
  21. Koç E., İslek C., Üstün A.S.: Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. - Gazi Univ. J. Sci. 23: 1-6, 2010.
  22. Kretsinger R.H., Nockolds C.E.: Carp muscle calcium-binding protein II. Structure determination and general description. - J. Biol. Chem. 248: 3313-3326, 1973. Go to original source...
  23. Kuboniwa H., Tjandra N., Grzesiek S. et al.: Solution structure of calcium-free calmodulin. - Nat. Struct. Biol. 2: 768-776, 1995. Go to original source...
  24. Kwon S., Jeong Y., Lee H.: Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologenmediated oxidative stress. - Plant Cell Environ. 25: 873-882, 2002. Go to original source...
  25. Lin K.H., Hwang W.C., Lo H.F.: Chilling stress and chilling tolerance of sweet potato as sensed by chlorophyll fluorescence. - Photosynthetica 45: 628-632, 2007. Go to original source...
  26. Linse S., Forsén S.: Determinants that govern high-affinity calcium binding. - Adv. Sec. Mess. Phosph. 30: 89-151, 1995. Go to original source...
  27. Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. - Methods 25: 402-408, 2001. Go to original source...
  28. Malabadi R.B., van Staden J.: Cold-enhanced somatic embryogenesis in Pinus patula is mediated by calcium. - S. Afr. J. Bot. 72: 613-618, 2006. Go to original source...
  29. Minami A., Nagao M., Ikegami K. et al.: Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. - Planta 220: 414-423, 2005. Go to original source...
  30. Murata N., Takahashi S., Nishiyama Y. et al.: Photoinhibition of photosystem II under environmental stress. - BBABioenergetics 1767: 414-421, 2007. Go to original source...
  31. Nelson M.R., Chazin W.J.: Structures of EF-hand Ca2+-binding proteins: diversity in the organization, packing and response to Ca2+ binding. - Biometals 11: 297-318, 1998. Go to original source...
  32. Orlova I.V., Serebriiskaya, T.S., Popov V. et al.: Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. - Plant Cell Physiol. 44: 447-450, 2003. Go to original source...
  33. Parvanova D., Popova A., Zaharieva I. et al.: Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or glycine betaine. Variable chlorophyll fluorescence evidence. - Photosynthetica 42: 179-185, 2004. Go to original source...
  34. Payton P., Webb R., Kornyeyev D.: Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. - J. Exp. Bot. 52: 2345-2354, 2001. Go to original source...
  35. Puhakainen T., Hess M.W., Mäkelä P. et al.: Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. - Plant Mol. Biol. 54: 743-753, 2004. Go to original source...
  36. Reddy A.S., Ali G.S., Celesnik H. et al.: Coping with stresses: roles of calcium and calcium/calmodulin-regulated gene expression. - Plant Cell 23: 2010-2032, 2011. Go to original source...
  37. Reddy A.S.: Calcium: silver bullet in signaling. - Plant Sci. 160: 381-404, 2001. Go to original source...
  38. Saijo Y., Hata S., Kyozuka J. et al.: Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/ drought tolerance on rice plants. - Plant J. 23: 319-327, 2000. Go to original source...
  39. Saimi Y., Kung C.: Ion channel regulation by calmodulin binding. - FEBS Lett. 350: 155-158, 1994. Go to original source...
  40. Wang F., Feng G., Chen K. et al.: Burdock fructooligosaccharide induces resistance to tobacco mosaic virus in tobacco seedlings. - Physiol. Mol. Plant P. 74: 34-40, 2009. Go to original source...
  41. Wang H., Jin J.Y.: Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency. - Photosynthetica 43: 591-596, 2005. Go to original source...
  42. Wassenegger M., Heimes S., Riedel L. et al.: RNA-directed de novo methylation of genomic sequences in plants. - Cell 76: 567-576, 1994. Go to original source...
  43. Yang N., Peng C., Cheng D. et al.: The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. - Gene 521: 32-37, 2013. Go to original source...
  44. Yang T., Chaudhuri S., Yang L.: A calcium/calmodulinregulated member of the receptor-like kinase family confers cold tolerance in plants. - J. Biol. Chem. 285: 7119-7126, 2010. Go to original source...
  45. Zehra A., Gul B., Ansari R. et al.: Role of calcium in alleviating effect of salinity on germination of Phragmites karka seeds. - S. African J. Bot. 78: 122-128, 2012. Go to original source...
  46. Zhang Q., Zhang J.Z., Chow W.S. et al.: The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. - Photosynthetica 49: 201-208, 2011. Go to original source...
  47. Zhang Z., Huang R.: Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. - Plant Mol. Biol. 73: 241-249, 2010. Go to original source...