Skip to main content

Advertisement

Log in

An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Since ancient times, dietary phytochemicals are known for their medicinal properties. They are broadly classified into polyphenols, terpenoids, alkaloids, phytosterols, and organosulfur compounds. Currently, there is considerable interest in their potential health effects against various diseases, including lung cancer. Lung cancer is the leading cause of cancer deaths with an average of five-year survival rate of lung cancer patients limited to just 14%. Identifying potential early molecular biomarkers of pre-malignant lung cancer cells may provide a strong basis to develop early cancer detection and interception methods. In this review, we will discuss molecular changes, including genetic alterations, inflammation, signal transduction pathways, redox imbalance, epigenetic and proteomic signatures associated with initiation and progression of lung carcinoma. We will also highlight molecular targets of phytochemicals during lung cancer development. These targets mainly consist of cellular signaling pathways, epigenetic regulators and metabolic reprogramming. With growing interest in natural products research, translation of these compounds into new cancer prevention approaches to medical care will be urgently needed. In this context, we will also discuss the overall pharmacokinetic challenges of phytochemicals in translating to humans. Lastly, we will discuss clinical trials of phytochemicals in lung cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AKT:

Protein kinase B

AMPK:

AMP activated protein kinase

ARE:

Antioxidant response element

B(a)P:

Benzo(a)pyrene

Bax:

Bcl-2 Associated X-protein

BPDE:

Benzo[a]pyrene diol epoxide

CCND1:

Cyclin D1

CD:

Conjugated dienes

CDK:

Cyclin dependent kinase

CIC:

Cancer initiating cells

Cmax:

Maximum plasma concentration

COX-2:

Cyclooxygenase 2

CREB:

CAMP-response element binding protein

CpG:

Cytosine phosphate guanine

DNMT:

DNA methyltransferase

DUSP5:

Dual Specificity Phosphatase 5

EGCG:

Epigallocatechin-3-gallate

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

ENO1:

Enolase 1

EP4:

E-type prostanoid receptor 4

ER:

Estrogen receptor

ERK:

Extracellular signal-regulated kinase

GFR:

Growth factor receptor

GLS:

Glutaminase

GLUT1:

Glucose transporter type 1

GPCR:

G protein-coupled receptor

GPX:

Glutathione peroxidase

GSH:

Glutathione

GST:

Glutathione-s-tranferase

HDAC:

Histone deacetylase

HIF1A:

Hypoxia-inducible factor 1-alpha

HK2:

Hexokinases II

4-HNE:

4-Hydroxynonenal

IDH1:

Isocitrate dehydrogenase 1

IDH2:

Isocitrate dehydrogenase 2

I3C:

Indole-3-carbinol

IL1B:

Interleukin1B

IL6:

Interleukin6

IL8:

Interleukin8

JNK:

C-Jun N-terminal kinase

KEAP1:

Kelch-like ECH-associated protein 1

KRAS:

Kirsten rat sarcoma

LDH:

Lactate dehydrogenase

LLC:

Lewis lung carcinoma

lncRNAs:

Long noncoding RNAs

MAPK:

Mitogen activated protein kinase

MDA:

Malonyldialdehyde

MMP:

Matrix mellanoproteinase

mTOR:

Mechanistic target of rapamycin kinase

NF-κB:

Nuclear factor kappa B

NSCLC:

Non-small cell lung cancer

NOX:

NADPH oxidase

NRF2:

Nuclear factor erythroid 2-related factor 2

OSI:

Oxidative stress index

OXPHOS:

Oxidative phosphorylation

PARP:

Poly [ADP-ribose] polymerase

PGDH:

3-Phosphoglycerate dehydrogenase

PGE2:

Prostaglandin E synthase 2

PI3K:

Phosphatidylinositol-3-kinase

PIK3CA:

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

PKM2:

Pyruvate kinase M2

PNS:

Panax notoginseng saponins

PTEN:

Phosphatase and tensin homolog

RAF:

Rapidly accelerated fibrosarcoma

RAR:

Retinoic acid receptor

RAS:

Rat sarcoma virus

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

SAM:

S-adenosylmethionine

SCLC:

Small cell lung cancer

SIRT:

Sirtuin

SOD:

Superoxide dismutase

SP1:

Specificity protein 1

STAT3:

Signal transducer and activator of transcription 3

SWI/SNF:

SWItch/Sucrose Non-Fermentable

TAS:

Total antioxidant status

TKI:

Tyrosine kinase inhibitor

TNF:

Tumor necrosis factor

TOS:

Total oxidant status

Tp53:

Tumor protein 53

TSG:

Tumor suppressor gene

References

  1. Melkamu K, Jeanne G. The Global Burden and Perspectives on Non-Communicable Diseases (NCDs) and the Prevention, Data Availability and Systems Approach of NCDs in Low-resource Countries. In: Edlyne Eze A, Niyi A, editors. Public Health in Developing Countries. Rijeka: IntechOpen; 2019. p. Ch. 2.

  2. She Y, Jin Z, Wu J, Deng J, Zhang L, Su H, Jiang G, Liu H, Xie D, Cao N, Ren Y, Chen C. Development and Validation of a Deep Learning Model for Non-Small Cell Lung Cancer Survival. JAMA Netw Open. 2020;3(6):e205842. https://doi.org/10.1001/jamanetworkopen.2020.5842. Development Center during the conduct of the study. No other disclosures were reported.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lu S, Kong H, Hou Y, Ge D, Huang W, Ou J, Yang D, Zhang L, Wu G, Song Y, Zhang X, Zhai C, Wang Q, Zhu H, Wu Y, Bai C. Two plasma microRNA panels for diagnosis and subtype discrimination of lung cancer. Lung Cancer. 2018;123:44–51. https://doi.org/10.1016/j.lungcan.2018.06.027.

    Article  PubMed  Google Scholar 

  4. Hirsch FR, Franklin WA, Gazdar AF, Bunn PA Jr. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res. 2001;7(1):5–22.

    CAS  PubMed  Google Scholar 

  5. Jassem E, Szymanowska A, Sieminska A, Jassem J. Smoking and lung cancer. Pneumonol Alergol Pol. 2009;77(5):469–73.

    PubMed  Google Scholar 

  6. Corrales L, Rosell R, Cardona AF, Martin C, Zatarain-Barron ZL, Arrieta O. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Crit Rev Oncol Hematol. 2020;148:102895. https://doi.org/10.1016/j.critrevonc.2020.102895.

    Article  PubMed  Google Scholar 

  7. Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev. 2008;11(1):1–15. https://doi.org/10.1080/10937400701436460.

    Article  CAS  PubMed  Google Scholar 

  8. Gomes M, Teixeira AL, Coelho A, Araujo A, Medeiros R. The role of inflammation in lung cancer. Adv Exp Med Biol. 2014;816:1–23. https://doi.org/10.1007/978-3-0348-0837-8_1.

    Article  CAS  PubMed  Google Scholar 

  9. Tan Z, Xue H, Sun Y, Zhang C, Song Y, Qi Y. The Role of Tumor Inflammatory Microenvironment in Lung Cancer. Front Pharmacol. 2021;12:688625. https://doi.org/10.3389/fphar.2021.688625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wadowska K, Bil-Lula I, Trembecki L, Sliwinska-Mosson M. Genetic Markers in Lung Cancer Diagnosis: A Review. Int J Mol Sci. 2020;21(13). https://doi.org/10.3390/ijms21134569.

  11. Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst. 1996;88(20):1442–55. https://doi.org/10.1093/jnci/88.20.1442.

    Article  CAS  PubMed  Google Scholar 

  12. Mitsudomi T, Hamajima N, Ogawa M, Takahashi T. Prognostic significance of p53 alterations in patients with non-small cell lung cancer: a meta-analysis. Clin Cancer Res. 2000;6(10):4055–63.

    CAS  PubMed  Google Scholar 

  13. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500. https://doi.org/10.1126/science.1099314.

    Article  CAS  PubMed  Google Scholar 

  14. Luo SY, Lam DC. Oncogenic driver mutations in lung cancer. Transl Respir Med. 2013;1(1):6. https://doi.org/10.1186/2213-0802-1-6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheng H, Shcherba M, Pendurti G, Liang Y, Piperdi B, Perez-Soler R. Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Manag. 2014;3(1):67–75. https://doi.org/10.2217/lmt.13.72.

    Article  CAS  PubMed  Google Scholar 

  16. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F, Tinelli S, Roz E, Caserini R, Lo Vullo S, Camerini T, Mariani L, Delia D, Calabro E, Pastorino U, Sozzi G. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A. 2009;106(38):16281–6. https://doi.org/10.1073/pnas.0905653106.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mancini R, Giarnieri E, De Vitis C, Malanga D, Roscilli G, Noto A, Marra E, Laudanna C, Zoppoli P, De Luca P, Affuso A, Ruco L, Di Napoli A, Mesiti G, Aurisicchio L, Ricci A, Mariotta S, Pisani L, Andreetti C, Viglietto G, Rendina EA, Giovagnoli MR, Ciliberto G. Spheres derived from lung adenocarcinoma pleural effusions: molecular characterization and tumor engraftment. PLoS One. 2011;6(7):e21320. https://doi.org/10.1371/journal.pone.0021320. River. His role has been simply that of a scientific advisor for some of the experiments conducted in vivo in mice at BIOGEM, a non-profit institution. Authors CDV, GR, DM, EM, CL, PDL, AA, LA, and GV, are employees of Biogem s.c.a.r.l. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brzezianska E, Dutkowska A, Antczak A. The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep. 2013;40(1):309–25. https://doi.org/10.1007/s11033-012-2063-4.

    Article  CAS  PubMed  Google Scholar 

  19. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A. 1998;95(20):11891–6. https://doi.org/10.1073/pnas.95.20.11891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nuovo GJ, Plaia TW, Belinsky SA, Baylin SB, Herman JG. In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci U S A. 1999;96(22):12754–9. https://doi.org/10.1073/pnas.96.22.12754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brock MV, Hooker CM, Ota-Machida E, Han Y, Guo M, Ames S, Glockner S, Piantadosi S, Gabrielson E, Pridham G, Pelosky K, Belinsky SA, Yang SC, Baylin SB, Herman JG. DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med. 2008;358(11):1118–28. https://doi.org/10.1056/NEJMoa0706550.

    Article  CAS  PubMed  Google Scholar 

  22. Kim DS, Kim MJ, Lee JY, Kim YZ, Kim EJ, Park JY. Aberrant methylation of E-cadherin and H-cadherin genes in nonsmall cell lung cancer and its relation to clinicopathologic features. Cancer. 2007;110(12):2785–92. https://doi.org/10.1002/cncr.23113.

    Article  CAS  PubMed  Google Scholar 

  23. Fischer JR, Ohnmacht U, Rieger N, Zemaitis M, Stoffregen C, Manegold C, Lahm H. Prognostic significance of RASSF1A promoter methylation on survival of non-small cell lung cancer patients treated with gemcitabine. Lung Cancer. 2007;56(1):115–23. https://doi.org/10.1016/j.lungcan.2006.11.016.

    Article  PubMed  Google Scholar 

  24. Grote HJ, Schmiemann V, Kiel S, Bocking A, Kappes R, Gabbert HE, Sarbia M. Aberrant methylation of the adenomatous polyposis coli promoter 1A in bronchial aspirates from patients with suspected lung cancer. Int J Cancer. 2004;110(5):751–5. https://doi.org/10.1002/ijc.20196.

    Article  CAS  PubMed  Google Scholar 

  25. Tang X, Khuri FR, Lee JJ, Kemp BL, Liu D, Hong WK, Mao L. Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst. 2000;92(18):1511–6. https://doi.org/10.1093/jnci/92.18.1511.

    Article  CAS  PubMed  Google Scholar 

  26. Smolkova K, Miko E, Kovacs T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal. 2020;33(13):966–97. https://doi.org/10.1089/ars.2020.8024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muscarella LA, Parrella P, D’Alessandro V, la Torre A, Barbano R, Fontana A, Tancredi A, Guarnieri V, Balsamo T, Coco M, Copetti M, Pellegrini F, De Bonis P, Bisceglia M, Scaramuzzi G, Maiello E, Valori VM, Merla G, Vendemiale G, Fazio VM. Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer. Epigenetics. 2011;6(6):710–9. https://doi.org/10.4161/epi.6.6.15773.

    Article  CAS  PubMed  Google Scholar 

  28. Wani JA, Majid S, Imtiyaz Z, Rehman MU, Alsaffar RM, Shah NN, Alshehri S, Ghoneim MM, Imam SS. MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel). 2022;12(7). https://doi.org/10.3390/diagnostics12071610.

  29. Heller G, Weinzierl M, Noll C, Babinsky V, Ziegler B, Altenberger C, Minichsdorfer C, Lang G, Dome B, End-Pfutzenreuter A, Arns BM, Grin Y, Klepetko W, Zielinski CC, Zochbauer-Muller S. Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers. Clin Cancer Res. 2012;18(6):1619–29. https://doi.org/10.1158/1078-0432.CCR-11-2450.

    Article  CAS  PubMed  Google Scholar 

  30. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007;104(40):15805–10. https://doi.org/10.1073/pnas.0707628104.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B, Gazzeri S. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res. 2008;14(22):7237–45. https://doi.org/10.1158/1078-0432.CCR-08-0869.

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki H, Moriyama S, Nakashima Y, Kobayashi Y, Kiriyama M, Fukai I, Yamakawa Y, Fujii Y. Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer. 2004;46(2):171–8. https://doi.org/10.1016/j.lungcan.2004.03.021.

    Article  PubMed  Google Scholar 

  33. Si M, Lang J. The roles of metallothioneins in carcinogenesis. J Hematol Oncol. 2018;11(1):107. https://doi.org/10.1186/s13045-018-0645-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang WC, Chin TM, Yang H, Nga ME, Lunny DP, Lim EK, Sun LL, Pang YH, Leow YN, Malusay SR, Lim PX, Lee JZ, Tan BJ, Shyh-Chang N, Lim EH, Lim WT, Tan DS, Tan EH, Tai BC, Soo RA, Tam WL, Lim B. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat Commun. 2016;7:11702. https://doi.org/10.1038/ncomms11702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Faversani A, Amatori S, Augello C, Colombo F, Porretti L, Fanelli M, Ferrero S, Palleschi A, Pelicci PG, Belloni E, Ercoli G, Degrassi A, Baccarin M, Altieri DC, Vaira V, Bosari S. miR-494-3p is a novel tumor driver of lung carcinogenesis. Oncotarget. 2017;8(5):7231–47. https://doi.org/10.18632/oncotarget.13933.

    Article  PubMed  Google Scholar 

  36. Chiarugi P. From anchorage dependent proliferation to survival: lessons from redox signalling. IUBMB Life. 2008;60(5):301–7. https://doi.org/10.1002/iub.45.

    Article  CAS  PubMed  Google Scholar 

  37. Wu Q, Yao B, Li N, Ma L, Deng Y, Yang Y, Zeng C, Yang Z, Liu B. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells. Exp Cell Res. 2017;352(2):245–54. https://doi.org/10.1016/j.yexcr.2017.02.014.

    Article  CAS  PubMed  Google Scholar 

  38. Tran Q, Lee H, Park J, Kim SH, Park J. Targeting Cancer Metabolism - Revisiting the Warburg Effects. Toxicol Res. 2016;32(3):177–93. https://doi.org/10.5487/TR.2016.32.3.177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong SW, Park NS, Noh MH, Shim JA, Ahn BN, Kim YS, Kim D, Lee HK, Hur DY. Combination treatment with erlotinib and ampelopsin overcomes erlotinib resistance in NSCLC cells via the Nox2-ROS-Bim pathway. Lung Cancer. 2017;106:115–24. https://doi.org/10.1016/j.lungcan.2017.02.009.

    Article  PubMed  Google Scholar 

  40. Zablocka-Slowinska K, Placzkowska S, Skorska K, Prescha A, Pawelczyk K, Porebska I, Kosacka M, Grajeta H. Oxidative stress in lung cancer patients is associated with altered serum markers of lipid metabolism. PLoS One. 2019;14(4):e0215246. https://doi.org/10.1371/journal.pone.0215246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu X, Qian L, Zhang Y, Fan L, Cao CX, Xiao H. Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta. 2017;982:84–95. https://doi.org/10.1016/j.aca.2017.06.005.

    Article  CAS  PubMed  Google Scholar 

  42. Hu R, Saw CL, Yu R, Kong AN. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal. 2010;13(11):1679–98. https://doi.org/10.1089/ars.2010.3276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Satoh H, Moriguchi T, Taguchi K, Takai J, Maher JM, Suzuki T, Winnard PT Jr, Raman V, Ebina M, Nukiwa T, Yamamoto M. Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis. 2010;31(10):1833–43. https://doi.org/10.1093/carcin/bgq105.

    Article  CAS  PubMed  Google Scholar 

  44. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, Brock MV, Biswal S. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 2006;3(10):e420. https://doi.org/10.1371/journal.pmed.0030420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feskanich D, Ziegler RG, Michaud DS, Giovannucci EL, Speizer FE, Willett WC, Colditz GA. Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J Natl Cancer Inst. 2000;92(22):1812–23. https://doi.org/10.1093/jnci/92.22.1812.

    Article  CAS  PubMed  Google Scholar 

  46. London SJ, Yuan JM, Chung FL, Gao YT, Coetzee GA, Ross RK, Yu MC. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai. China Lancet. 2000;356(9231):724–9. https://doi.org/10.1016/S0140-6736(00)02631-3.

    Article  CAS  PubMed  Google Scholar 

  47. Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006;8(1–2):76–87. https://doi.org/10.1089/ars.2006.8.76.

    Article  CAS  PubMed  Google Scholar 

  48. Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 2007;64(9):1105–27. https://doi.org/10.1007/s00018-007-6484-5.

    Article  CAS  PubMed  Google Scholar 

  49. Pratheeshkumar P, Son YO, Divya SP, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Wang Y, Shi X. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol Appl Pharmacol. 2014;281(2):230–41. https://doi.org/10.1016/j.taap.2014.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kasala ER, Bodduluru LN, Barua CC, Gogoi R. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis. Biomed Pharmacother. 2016;82:568–77. https://doi.org/10.1016/j.biopha.2016.05.042.

    Article  CAS  PubMed  Google Scholar 

  51. Patel R, Maru G. Polymeric black tea polyphenols induce phase II enzymes via Nrf2 in mouse liver and lungs. Free Radic Biol Med. 2008;44(11):1897–911. https://doi.org/10.1016/j.freeradbiomed.2008.02.006.

    Article  CAS  PubMed  Google Scholar 

  52. Shen H, Wu N, Liu Z, Zhao H, Zhao M. Epigallocatechin-3-gallate alleviates paraquat-induced acute lung injury and inhibits upregulation of toll-like receptors. Life Sci. 2017;170:25–32. https://doi.org/10.1016/j.lfs.2016.11.021.

    Article  CAS  PubMed  Google Scholar 

  53. Shi J, Liu F, Zhang W, Liu X, Lin B, Tang X. Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol Rep. 2015;33(6):2972–80. https://doi.org/10.3892/or.2015.3889.

    Article  CAS  PubMed  Google Scholar 

  54. Garg R, Gupta S, Maru GB. Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: mechanism of its anti-initiating action. Carcinogenesis. 2008;29(5):1022–32. https://doi.org/10.1093/carcin/bgn064.

    Article  CAS  PubMed  Google Scholar 

  55. Rennolds J, Malireddy S, Hassan F, Tridandapani S, Parinandi N, Boyaka PN, Cormet-Boyaka E. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium. Biochem Biophys Res Commun. 2012;417(1):256–61. https://doi.org/10.1016/j.bbrc.2011.11.096.

    Article  CAS  PubMed  Google Scholar 

  56. Hamza RZ, El-Shenawy NS. Anti-inflammatory and antioxidant role of resveratrol on nicotine-induced lung changes in male rats. Toxicol Rep. 2017;4:399–407. https://doi.org/10.1016/j.toxrep.2017.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rasheduzzaman M, Jeong JK, Park SY. Resveratrol sensitizes lung cancer cell to TRAIL by p53 independent and suppression of Akt/NF-kappaB signaling. Life Sci. 2018;208:208–20. https://doi.org/10.1016/j.lfs.2018.07.035.

    Article  CAS  PubMed  Google Scholar 

  58. Chen W, Padilla MT, Xu X, Desai D, Krzeminski J, Amin S, Lin Y. Quercetin inhibits multiple pathways involved in interleukin 6 secretion from human lung fibroblasts and activity in bronchial epithelial cell transformation induced by benzo[a]pyrene diol epoxide. Mol Carcinog. 2016;55(11):1858–66. https://doi.org/10.1002/mc.22434.

    Article  CAS  PubMed  Google Scholar 

  59. Fu K, Wang Z, Cao R. Berberine attenuates the inflammatory response by activating the Keap1/Nrf2 signaling pathway in bovine endometrial epithelial cells. Int Immunopharmacol. 2021;96:107738. https://doi.org/10.1016/j.intimp.2021.107738.

    Article  CAS  PubMed  Google Scholar 

  60. Lu JJ, Fu L, Tang Z, Zhang C, Qin L, Wang J, Yu Z, Shi D, Xiao X, Xie F, Huang W, Deng W. Melatonin inhibits AP-2beta/hTERT, NF-kappaB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget. 2016;7(3):2985–3001. https://doi.org/10.18632/oncotarget.6407.

    Article  PubMed  Google Scholar 

  61. Anandakumar P, Kamaraj S, Jagan S, Ramakrishnan G, Asokkumar S, Naveenkumar C, Raghunandhakumar S, Devaki T. Capsaicin inhibits benzo(a)pyrene-induced lung carcinogenesis in an in vivo mouse model. Inflamm Res. 2012;61(11):1169–75. https://doi.org/10.1007/s00011-012-0511-1.

    Article  CAS  PubMed  Google Scholar 

  62. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997;9(2):180–6. https://doi.org/10.1016/s0955-0674(97)80061-0.

    Article  CAS  PubMed  Google Scholar 

  63. Tsai CM, Sun FM, Chen YL, Hsu CL, Yen GC, Weng CJ. Molecular mechanism depressing PMA-induced invasive behaviors in human lung adenocarcinoma cells by cis- and trans-cinnamic acid. Eur J Pharm Sci. 2013;48(3):494–501. https://doi.org/10.1016/j.ejps.2012.11.013.

    Article  CAS  PubMed  Google Scholar 

  64. Yang SF, Lee WJ, Tan P, Tang CH, Hsiao M, Hsieh FK, Chien MH. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas. Oncotarget. 2015;6(5):2736–53. https://doi.org/10.18632/oncotarget.3088.

    Article  PubMed  Google Scholar 

  65. Kang N, Jian JF, Cao SJ, Zhang Q, Mao YW, Huang YY, Peng YF, Qiu F, Gao XM. Physalin A induces G2/M phase cell cycle arrest in human non-small cell lung cancer cells: involvement of the p38 MAPK/ROS pathway. Mol Cell Biochem. 2016;415(1–2):145–55. https://doi.org/10.1007/s11010-016-2686-1.

    Article  CAS  PubMed  Google Scholar 

  66. Abd El Maksoud AI, Taher RF, Gaara AH, Abdelrazik E, Keshk OS, Elawdan KA, Morsy SE, Salah A, Khalil H. Selective Regulation of B-Raf Dependent K-Ras/Mitogen-Activated Protein by Natural Occurring Multi-kinase Inhibitors in Cancer Cells. Front Oncol. 2019;9:1220. https://doi.org/10.3389/fonc.2019.01220.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang L, Huang Y, Zhuo W, Zhu Y, Zhu B, Chen Z. Fisetin, a dietary phytochemical, overcomes Erlotinib-resistance of lung adenocarcinoma cells through inhibition of MAPK and AKT pathways. Am J Transl Res. 2016;8(11):4857–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jia XB, Zhang Q, Xu L, Yao WJ, Wei L. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol Res. 2021;54(1):7. https://doi.org/10.1186/s40659-021-00330-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lim WC, Choi HK, Kim KT, Lim TG. Rose (Rosa gallica) Petal Extract Suppress Proliferation, Migration, and Invasion of Human Lung Adenocarcinoma A549 Cells through via the EGFR Signaling Pathway. Molecules. 2020;25(21). https://doi.org/10.3390/molecules25215119.

  70. Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N, Soh J, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Date H, Lam WL, Minna JD, Gazdar AF. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 2008;68(17):6913–21. https://doi.org/10.1158/0008-5472.CAN-07-5084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497–510. https://doi.org/10.1038/onc.2008.245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44. https://doi.org/10.1038/nrd2926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu Q, Liang X, Niu C, Wang X. Ellagic acid promotes A549 cell apoptosis via regulating the phosphoinositide 3-kinase/protein kinase B pathway. Exp Ther Med. 2018;16(1):347–52. https://doi.org/10.3892/etm.2018.6193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qian X, Melkamu T, Upadhyaya P, Kassie F. Indole-3-carbinol inhibited tobacco smoke carcinogen-induced lung adenocarcinoma in A/J mice when administered during the post-initiation or progression phase of lung tumorigenesis. Cancer Lett. 2011;311(1):57–65. https://doi.org/10.1016/j.canlet.2011.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen Y, Tang Q, Wu J, Zheng F, Yang L, Hann SS. Inactivation of PI3-K/Akt and reduction of SP1 and p65 expression increase the effect of solamargine on suppressing EP4 expression in human lung cancer cells. J Exp Clin Cancer Res. 2015;34:154. https://doi.org/10.1186/s13046-015-0272-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pai JT, Lee YC, Chen SY, Leu YL, Weng MS. Propolin C Inhibited Migration and Invasion via Suppression of EGFR-Mediated Epithelial-to-Mesenchymal Transition in Human Lung Cancer Cells. Evid Based Complement Alternat Med. 2018;2018:7202548. https://doi.org/10.1155/2018/7202548.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bo S, Lai J, Lin H, Luo X, Zeng Y, Du T. Purpurin, a anthraquinone induces ROS-mediated A549 lung cancer cell apoptosis via inhibition of PI3K/AKT and proliferation. J Pharm Pharmacol. 2021;73(8):1101–8. https://doi.org/10.1093/jpp/rgab056.

    Article  PubMed  Google Scholar 

  78. Qian Y, Shanbo M, Shaojie H, Long L, Yuhan C, Jin W, Shan M, Xiao-Peng S. Integrating bioinformatics with pharmacological evaluation for illustrating the action mechanism of herbal formula Jiao’e mixture in suppressing lung carcinoma. J Ethnopharmacol. 2021;281:114513. https://doi.org/10.1016/j.jep.2021.114513.

    Article  CAS  PubMed  Google Scholar 

  79. Guo Y, Wu R, Gaspar JM, Sargsyan D, Su ZY, Zhang C, Gao L, Cheng D, Li W, Wang C, Yin R, Fang M, Verzi MP, Hart RP, Kong AN. DNA methylome and transcriptome alterations and cancer prevention by curcumin in colitis-accelerated colon cancer in mice. Carcinogenesis. 2018;39(5):669–80. https://doi.org/10.1093/carcin/bgy043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang L, Shannar AAF, Wu R, Chou P, Sarwar MS, Kuo HC, Peter RM, Wang Y, Su X, Kong AN. Butyrate Drives Metabolic Rewiring and Epigenetic Reprogramming in Human Colon Cancer Cells. Mol Nutr Food Res. 2022;66(12):e2200028. https://doi.org/10.1002/mnfr.202200028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang Y, Wu R, Sargsyan D, Yin R, Kuo HC, Yang I, Wang L, Cheng D, Wang C, Li S, Hudlikar R, Lu Y, Kong AN. UVB drives different stages of epigenome alterations during progression of skin cancer. Cancer Lett. 2019;449:20–30. https://doi.org/10.1016/j.canlet.2019.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu R, Li S, Sargsyan D, Yin R, Kuo HC, Peter R, Wang L, Hudlikar R, Liu X, Kong AN. DNA methylome, transcriptome, and prostate cancer prevention by phenethyl isothiocyanate in TRAMP mice. Mol Carcinog. 2021;60(6):391–402. https://doi.org/10.1002/mc.23299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jin B, Robertson KD. DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol. 2013;754:3–29. https://doi.org/10.1007/978-1-4419-9967-2_1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu Y-L, Lin Z-J, Li C-C, Lin X, Shan S-K, Guo B, Zheng M-H, Li F, Yuan L-Q, Li Z-h. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther. 2023;8(1):98. https://doi.org/10.1038/s41392-023-01333-7.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jasek K, Kubatka P, Samec M, Liskova A, Smejkal K, Vybohova D, Bugos O, Biskupska-Bodova K, Bielik T, Zubor P, Danko J, Adamkov M, Kwon TK, Busselberg D. DNA Methylation Status in Cancer Disease: Modulations by Plant-Derived Natural Compounds and Dietary Interventions. Biomolecules. 2019;9(7). https://doi.org/10.3390/biom9070289.

  86. Jones A, Teschendorff AE, Li Q, Hayward JD, Kannan A, Mould T, West J, Zikan M, Cibula D, Fiegl H, Lee SH, Wik E, Hadwin R, Arora R, Lemech C, Turunen H, Pakarinen P, Jacobs IJ, Salvesen HB, Bagchi MK, Bagchi IC, Widschwendter M. Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development. PLoS Med. 2013;10(11):e1001551. https://doi.org/10.1371/journal.pmed.1001551. Compensated: Abcodia, Becton Dickinson; stock ownership: Abcodia; research funding: Becton Dickinson; patents/licenses/royalties: ROCA Algorithm for Ovarian Cancer Screening. All other authors declare that no competing interests exist.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pop S, Enciu AM, Tarcomnicu I, Gille E, Tanase C. Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation. Phytochem Rev. 2019;18(4):1005–24. https://doi.org/10.1007/s11101-019-09627-x.

    Article  CAS  Google Scholar 

  88. Jiang A, Wang X, Shan X, Li Y, Wang P, Jiang P, Feng Q. Curcumin Reactivates Silenced Tumor Suppressor Gene RARβ by Reducing DNA Methylation. Phytother Res. 2015;29(8):1237–45. https://doi.org/10.1002/ptr.5373.

    Article  CAS  PubMed  Google Scholar 

  89. Chen Y, Tang Q, Xiao Q, Yang L, Hann SS. Targeting EP4 downstream c-Jun through ERK1/2-mediated reduction of DNMT1 reveals novel mechanism of solamargine-inhibited growth of lung cancer cells. J Cell Mol Med. 2017;21(2):222–33. https://doi.org/10.1111/jcmm.12958.

    Article  CAS  PubMed  Google Scholar 

  90. Huang C-C, Lai C-Y, Lin I-H, Tsai C-H, Tsai S-M, Lam K-L, Wang J-Y, Chen C-C, Wong R-H. Joint Effects of Cigarette Smoking and Green Tea Consumption with miR-29b and DNMT3B mRNA Expression in the Development of Lung Cancer. Genes. 2022;13(5):836. https://doi.org/10.3390/genes13050836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med. 2018;18(1):1–14. https://doi.org/10.1007/s10238-017-0467-0.

    Article  CAS  PubMed  Google Scholar 

  92. Piyathilake CJ, Johanning GL, Macaluso M, Whiteside M, Oelschlager DK, Heimburger DC, Grizzle WE. Localized folate and vitamin B-12 deficiency in squamous cell lung cancer is associated with global DNA hypomethylation. Nutr Cancer. 2000;37(1):99–107. https://doi.org/10.1207/S15327914NC3701_13.

    Article  CAS  PubMed  Google Scholar 

  93. Davis PK, Brachmann RK. Chromatin Remodeling and Cancer. Cancer Biol Ther. 2003;2(1):23–30. https://doi.org/10.4161/cbt.189.

    Article  Google Scholar 

  94. Teif VB, Rippe K. Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res. 2009;37(17):5641–55. https://doi.org/10.1093/nar/gkp610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen P, Huang HP, Wang Y, Jin J, Long WG, Chen K, Zhao XH, Chen CG, Li J. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. J Exp Clin Cancer Res. 2019;38(1):254. https://doi.org/10.1186/s13046-019-1234-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Oya Y, Mondal A, Rawangkan A, Umsumarng S, Iida K, Watanabe T, Kanno M, Suzuki K, Li Z, Kagechika H, Shudo K, Fujiki H, Suganuma M. Down-regulation of histone deacetylase 4, −5 and −6 as a mechanism of synergistic enhancement of apoptosis in human lung cancer cells treated with the combination of a synthetic retinoid, Am 80 and green tea catechin. J Nutr Biochem. 2017;42:7–16. https://doi.org/10.1016/j.jnutbio.2016.12.015.

    Article  CAS  PubMed  Google Scholar 

  97. Wang J, Li J, Cao N, Li Z, Han J, Li L. Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK. Onco Targets Ther. 2018;11:7777–86. https://doi.org/10.2147/OTT.S159095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Guo H, Ding H, Tang X, Liang M, Li S, Zhang J, Cao J. Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer. 2021;12(9):1415–22. https://doi.org/10.1111/1759-7714.13925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 2013;154(3):490–503. https://doi.org/10.1016/j.cell.2013.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schoenfeld AJ, Bandlamudi C, Lavery JA, Montecalvo J, Namakydoust A, Rizvi H, Egger J, Concepcion CP, Paul S, Arcila ME, Daneshbod Y, Chang J, Sauter JL, Beras A, Ladanyi M, Jacks T, Rudin CM, Taylor BS, Donoghue MTA, Heller G, Hellmann MD, Rekhtman N, Riely GJ. The Genomic Landscape of SMARCA4 Alterations and Associations with Outcomes in Patients with Lung Cancer. Clin Cancer Res. 2020;26(21):5701–8. https://doi.org/10.1158/1078-0432.CCR-20-1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tian Y, Xu L, Li X, Li H, Zhao M. SMARCA4: Current status and future perspectives in non-small-cell lung cancer. Cancer Lett. 2023;554:216022. https://doi.org/10.1016/j.canlet.2022.216022.

    Article  CAS  PubMed  Google Scholar 

  102. Ruiz-Manriquez LM, Estrada-Meza C, Benavides-Aguilar JA, Ledesma-Pacheco SJ, Torres-Copado A, Serrano-Cano FI, Bandyopadhyay A, Pathak S, Chakraborty S, Srivastava A. Phytochemicals mediated modulation of microRNAs and long non-coding RNAs in cancer prevention and therapy. Phytother Res. 2022;36(2):705–29.

    Article  CAS  PubMed  Google Scholar 

  103. Yang Q, Wang P, Cui J, Wang W, Chen Y, Zhang T. Panax notoginseng saponins attenuate lung cancer growth in part through modulating the level of Met/miR-222 axis. J Ethnopharmacol. 2016;193:255–65.

    Article  CAS  PubMed  Google Scholar 

  104. Huang S, Jin S, Xu B, Wang R. Puerarin alleviates the progression of non-small cell lung cancer by regulating the miR-342/CCND1 axis. Neoplasma. 2020;67(6):1244–55.

    Article  CAS  PubMed  Google Scholar 

  105. Malla RR, Padmaraju V, Marni R, Kamal MA. Natural products: Potential targets of TME related long non-coding RNAs in lung cancer. Phytomedicine. 2021;93:153782. https://doi.org/10.1016/j.phymed.2021.153782.

    Article  CAS  PubMed  Google Scholar 

  106. Cargill KR, Hasken WL, Gay CM, Byers LA. Alternative Energy: Breaking Down the Diverse Metabolic Features of Lung Cancers. Front Oncol. 2021;11:757323. https://doi.org/10.3389/fonc.2021.757323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, Irshad R, Mangalhara K, Bamezai RNK, Husain M, Ali SM, Iqbal MA. Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1alpha inhibition. Sci Rep. 2018;8(1):8323. https://doi.org/10.1038/s41598-018-25524-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30(42):4297–306. https://doi.org/10.1038/onc.2011.137.

    Article  CAS  PubMed  Google Scholar 

  109. Li W, Gao F, Ma X, Wang R, Dong X, Wang W. Deguelin inhibits non-small cell lung cancer via down-regulating Hexokinases II-mediated glycolysis. Oncotarget. 2017;8(20):32586–99. https://doi.org/10.18632/oncotarget.15937.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Granchi C, Fortunato S, Meini S, Rizzolio F, Caligiuri I, Tuccinardi T, Lee HY, Hergenrother PJ, Minutolo F. Characterization of the Saffron Derivative Crocetin as an Inhibitor of Human Lactate Dehydrogenase 5 in the Antiglycolytic Approach against Cancer. J Agric Food Chem. 2017;65(28):5639–49. https://doi.org/10.1021/acs.jafc.7b01668.

    Article  CAS  PubMed  Google Scholar 

  111. Eskandani M, Abdolalizadeh J, Hamishehkar H, Nazemiyeh H, Barar J. Galbanic acid inhibits HIF-1alpha expression via EGFR/HIF-1alpha pathway in cancer cells. Fitoterapia. 2015;101:1–11. https://doi.org/10.1016/j.fitote.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  112. Caiola E, Colombo M, Sestito G, Lupi M, Marabese M, Pastorelli R, Broggini M, Brunelli L. Glutaminase Inhibition on NSCLC Depends on Extracellular Alanine Exploitation. Cells. 2020;9(8). https://doi.org/10.3390/cells9081766.

  113. Cheng L, Wu CR, Zhu LH, Li H, Chen LX. Physapubescin, a natural withanolide as a kidney-type glutaminase (KGA) inhibitor. Bioorg Med Chem Lett. 2017;27(5):1243–6. https://doi.org/10.1016/j.bmcl.2017.01.057.

    Article  CAS  PubMed  Google Scholar 

  114. Wu C, Zheng M, Gao S, Luan S, Cheng L, Wang L, Li J, Chen L, Li H. A natural inhibitor of kidney-type glutaminase: a withanolide from Physalis pubescens with potent anti-tumor activity. Oncotarget. 2017;8(69):113516–30. https://doi.org/10.18632/oncotarget.23058.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N, Sallusto F, Lanzavecchia A. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell. 2016;167(3):829-42 e13. https://doi.org/10.1016/j.cell.2016.09.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Oberlies J, Watzl C, Giese T, Luckner C, Kropf P, Muller I, Ho AD, Munder M. Regulation of NK cell function by human granulocyte arginase. J Immunol. 2009;182(9):5259–67. https://doi.org/10.4049/jimmunol.0803523.

    Article  CAS  PubMed  Google Scholar 

  117. Yao J, Du Z, Li Z, Zhang S, Lin Y, Li H, Zhou L, Wang Y, Yan G, Wu X, Duan Y, Du G. 6-Gingerol as an arginase inhibitor prevents urethane-induced lung carcinogenesis by reprogramming tumor supporting M2 macrophages to M1 phenotype. Food Funct. 2018;9(9):4611–20. https://doi.org/10.1039/c8fo01147h.

    Article  CAS  PubMed  Google Scholar 

  118. Tse C, Warner A, Farook R, Cronin JG. Phytochemical Targeting of STAT3 Orchestrated Lipid Metabolism in Therapy-Resistant Cancers. Biomolecules. 2020;10(8). https://doi.org/10.3390/biom10081118.

  119. Hodakoski C, Hopkins BD, Zhang G, Su T, Cheng Z, Morris R, Rhee KY, Goncalves MD, Cantley LC. Rac-Mediated Macropinocytosis of Extracellular Protein Promotes Glucose Independence in Non-Small Cell Lung Cancer. Cancers (Basel). 2019;11(1). https://doi.org/10.3390/cancers11010037.

  120. Takenaka T, Nakai S, Katayama M, Hirano M, Ueno N, Noguchi K, Takatani-Nakase T, Fujii I, Kobayashi SS, Nakase I. Effects of gefitinib treatment on cellular uptake of extracellular vesicles in EGFR-mutant non-small cell lung cancer cells. Int J Pharm. 2019;572:118762. https://doi.org/10.1016/j.ijpharm.2019.118762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633–7. https://doi.org/10.1038/nature12138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kimmelman AC, White E. Autophagy and Tumor Metabolism. Cell Metab. 2017;25(5):1037–43. https://doi.org/10.1016/j.cmet.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chirumbolo S, Bjorklund G. PERM Hypothesis: The Fundamental Machinery Able to Elucidate the Role of Xenobiotics and Hormesis in Cell Survival and Homeostasis. Int J Mol Sci. 2017;18(1). https://doi.org/10.3390/ijms18010165.

  124. Zhang MS, Cui JD, Lee D, Yuen VW, Chiu DK, Goh CC, Cheu JW, Tse AP, Bao MH, Wong BPY, Chen CY, Wong CM, Ng IO, Wong CC. Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat Commun. 2022;13(1):954. https://doi.org/10.1038/s41467-022-28618-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee YM, Lee G, Oh TI, Kim BM, Shim DW, Lee KH, Kim YJ, Lim BO, Lim JH. Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. Int J Oncol. 2016;48(1):399–408. https://doi.org/10.3892/ijo.2015.3243.

    Article  CAS  PubMed  Google Scholar 

  126. Chang JH, Cheng CW, Yang YC, Chen WS, Hung WY, Chow JM, Chen PS, Hsiao M, Lee WJ, Chien MH. Downregulating CD26/DPPIV by apigenin modulates the interplay between Akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. J Exp Clin Cancer Res. 2018;37(1):199. https://doi.org/10.1186/s13046-018-0869-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rainey N, Motte L, Aggarwal BB, Petit PX. Curcumin hormesis mediates a cross-talk between autophagy and cell death. Cell Death Dis. 2015;6(12):e2003. https://doi.org/10.1038/cddis.2015.343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Moustapha A, Peretout PA, Rainey NE, Sureau F, Geze M, Petit JM, Dewailly E, Slomianny C, Petit PX. Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events. Cell Death Discov. 2015;1:15017. https://doi.org/10.1038/cddiscovery.2015.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen Q, Wang Y, Xu K, Lu G, Ying Z, Wu L, Zhan J, Fang R, Wu Y, Zhou J. Curcumin induces apoptosis in human lung adenocarcinoma A549 cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Oncol Rep. 2010;23(2):397–403.

    CAS  PubMed  Google Scholar 

  130. Zhang B, Chu W, Wei P, Liu Y, Wei T. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic Biol Med. 2015;89:486–97. https://doi.org/10.1016/j.freeradbiomed.2015.09.021.

    Article  CAS  PubMed  Google Scholar 

  131. Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L. Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell Biosci. 2018;8:56. https://doi.org/10.1186/s13578-018-0257-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Morrison AJ. Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. FEBS J. 2022;289(5):1302–14. https://doi.org/10.1111/febs.16032.

    Article  CAS  PubMed  Google Scholar 

  133. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 2011;43(9):869–74. https://doi.org/10.1038/ng.890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hudlikar RR, Sargsyan D, Cheng D, Kuo HD, Wu R, Su X, Kong AN. Tobacco carcinogen 4-[methyl(nitroso)amino]-1-(3-pyridinyl)-1-butanone (NNK) drives metabolic rewiring and epigenetic reprograming in A/J mice lung cancer model and prevention with diallyl sulphide (DAS). Carcinogenesis. 2022;43(2):140–9. https://doi.org/10.1093/carcin/bgab119.

    Article  CAS  PubMed  Google Scholar 

  135. Ueda K, Arakawa H, Nakamura Y. Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53. Oncogene. 2003;22(36):5586–91. https://doi.org/10.1038/sj.onc.1206845.

    Article  CAS  PubMed  Google Scholar 

  136. Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9(2):216–37. https://doi.org/10.1007/s13238-017-0451-1.

    Article  CAS  PubMed  Google Scholar 

  137. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44. https://doi.org/10.1038/nature08617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shannar A, Sarwar MS, Kong AT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci. 2022;27(4):335–46. https://doi.org/10.3746/pnf.2022.27.4.335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wong VK, Dong H, Liang X, Bai LP, Jiang ZH, Guo Y, Kong AN, Wang R, Kam RK, Law BY, Hsiao WW, Chan KM, Wang J, Chan RW, Guo J, Zhang W, Yen FG, Zhou H, Leung EL, Yu Z, Liu L. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells. Oncotarget. 2016;7(9):9907–24. https://doi.org/10.18632/oncotarget.6934.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ma Z, Wang N, He H, Tang X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release. 2019;316:359–80. https://doi.org/10.1016/j.jconrel.2019.10.053.

    Article  CAS  PubMed  Google Scholar 

  141. Wang L, Li W, Cheng D, Guo Y, Wu R, Yin R, Li S, Kuo HC, Hudlikar R, Yang H, Buckley B, Kong AN. Pharmacokinetics and pharmacodynamics of three oral formulations of curcumin in rats. J Pharmacokinet Pharmacodyn. 2020;47(2):131–44. https://doi.org/10.1007/s10928-020-09675-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Margalef M, Guerrero L, Pons Z, Bravo FI, Arola L, Muguerza B, Arola-Arnal A. A dose–response study of the bioavailability of grape seed proanthocyanidin in rat and lipid-lowering effects of generated metabolites in HepG2 cells. Food Res Int. 2014;64:500–7.

    Article  CAS  PubMed  Google Scholar 

  143. Miyazawa T, Nakagawa K, Kudo M, Muraishi K, Someya K. Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3, 5-diglucoside, into rats and humans. J Agric Food Chem. 1999;47(3):1083–91.

    Article  CAS  PubMed  Google Scholar 

  144. Janle EM, Morre DM, Morre DJ, Zhou Q, Zhu Y. Pharmacokinetics of green tea catechins in extract and sustained-release preparations. J Diet Suppl. 2008;5(3):248–63. https://doi.org/10.1080/19390210802414279.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hollman PC, van Trijp JM, Buysman MN, van der Gaag MS, Mengelers MJ, de Vries JH, Katan MB. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 1997;418(1–2):152–6. https://doi.org/10.1016/s0014-5793(97)01367-7.

    Article  CAS  PubMed  Google Scholar 

  146. Tang D, Chen K, Huang L, Li J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin Drug Metab Toxicol. 2017;13(3):323–30. https://doi.org/10.1080/17425255.2017.1251903.

    Article  CAS  PubMed  Google Scholar 

  147. Teng Z, Yuan C, Zhang F, Huan M, Cao W, Li K, Yang J, Cao D, Zhou S, Mei Q. Intestinal absorption and first-pass metabolism of polyphenol compounds in rat and their transport dynamics in Caco-2 cells. PLoS One. 2012;7(1):e29647. https://doi.org/10.1371/journal.pone.0029647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Brett GM, Hollands W, Needs PW, Teucher B, Dainty JR, Davis BD, Brodbelt JS, Kroon PA. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. Br J Nutr. 2009;101(5):664–75. https://doi.org/10.1017/S000711450803081X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cheema AK, Mehta KY, Santiago PT, Fatanmi OO, Kaytor MD, Singh VK. Pharmacokinetic and Metabolomic Studies with BIO 300, a Nanosuspension of Genistein, in a Nonhuman Primate Model. Int J Mol Sci. 2019;20(5). https://doi.org/10.3390/ijms20051231.

  150. Passamonti S, Vrhovsek U, Vanzo A, Mattivi F. The stomach as a site for anthocyanins absorption from food. FEBS Lett. 2003;544(1–3):210–3.

    Article  CAS  PubMed  Google Scholar 

  151. Motilva M-J, Macià A, Romero M-P, Rubió L, Mercader M, González-Ferrero C. Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. J Funct Foods. 2016;25:80–93.

    Article  CAS  Google Scholar 

  152. de Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, Kay CD. The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol. 2014;171(13):3268–82. https://doi.org/10.1111/bph.12676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kirakosyan A, Seymour EM, Wolforth J, McNish R, Kaufman PB, Bolling SF. Tissue bioavailability of anthocyanins from whole tart cherry in healthy rats. Food Chem. 2015;171:26–31. https://doi.org/10.1016/j.foodchem.2014.08.114.

    Article  CAS  PubMed  Google Scholar 

  154. Chen L, Lee MJ, Li H, Yang CS. Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos. 1997;25(9):1045–50.

    CAS  PubMed  Google Scholar 

  155. Kim S, Lee MJ, Hong J, Li C, Smith TJ, Yang GY, Seril DN, Yang CS. Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr Cancer. 2000;37(1):41–8. https://doi.org/10.1207/S15327914NC3701_5.

    Article  CAS  PubMed  Google Scholar 

  156. Lampe JW, Chang JL. Interindividual differences in phytochemical metabolism and disposition. Semin Cancer Biol. 2007;17(5):347–53. https://doi.org/10.1016/j.semcancer.2007.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Aqil F, Jeyabalan J, Kausar H, Bansal SS, Sharma RJ, Singh IP, Vadhanam MV, Gupta RC. Multi-layer polymeric implants for sustained release of chemopreventives. Cancer Lett. 2012;326(1):33–40. https://doi.org/10.1016/j.canlet.2012.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gupta RC, Bansal SS, Aqil F, Jeyabalan J, Cao P, Kausar H, Russell GK, Munagala R, Ravoori S, Vadhanam MV. Controlled-release systemic delivery - a new concept in cancer chemoprevention. Carcinogenesis. 2012;33(8):1608–15. https://doi.org/10.1093/carcin/bgs209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xiao J, Wang Y, Peng J, Guo L, Hu J, Cao M, Zhang X, Zhang H, Wang Z, Li X, Yang S, Yang H, Liang G. A synthetic compound, 1,5-bis(2-methoxyphenyl)penta-1,4-dien-3-one (B63), induces apoptosis and activates endoplasmic reticulum stress in non-small cell lung cancer cells. Int J Cancer. 2012;131(6):1455–65. https://doi.org/10.1002/ijc.27406.

    Article  CAS  PubMed  Google Scholar 

  160. Muller AG, Sarker SD, Saleem IY, Hutcheon GA. Delivery of natural phenolic compounds for the potential treatment of lung cancer. Daru. 2019;27(1):433–49. https://doi.org/10.1007/s40199-019-00267-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cufi S, Bonavia R, Vazquez-Martin A, Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, Martin-Castillo B, Barrajon-Catalan E, Visa J, Segura-Carretero A, Bosch-Barrera J, Joven J, Micol V, Menendez JA. Silibinin meglumine, a water-soluble form of milk thistle silymarin, is an orally active anti-cancer agent that impedes the epithelial-to-mesenchymal transition (EMT) in EGFR-mutant non-small-cell lung carcinoma cells. Food Chem Toxicol. 2013;60:360–8. https://doi.org/10.1016/j.fct.2013.07.063.

    Article  CAS  PubMed  Google Scholar 

  162. Sornsuvit C, Hongwiset D, Yotsawimonwat S, Toonkum M, Thongsawat S, Taesotikul W. The Bioavailability and Pharmacokinetics of Silymarin SMEDDS Formulation Study in Healthy Thai Volunteers. Evid Based Complement Alternat Med. 2018;2018:1507834. https://doi.org/10.1155/2018/1507834.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310. https://doi.org/10.1038/sj.onc.1210422.

    Article  CAS  PubMed  Google Scholar 

  164. Mateu-Jimenez M, Sanchez-Font A, Rodriguez-Fuster A, Aguilomicron R, Pijuan L, Fermoselle C, Gea J, Curull V, Barreiro E. Redox Imbalance in Lung Cancer of Patients with Underlying Chronic Respiratory Conditions. Mol Med. 2016;22:85–98. https://doi.org/10.2119/molmed.2015.00199. Molecular Medicine, or other interests that might be perceived to influence the results and discussion reported in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the members of Professor Ah-Ng Tony Kong’s laboratory for their invaluable discussion and contribution in the preparation of this manuscript. Supported in part by Institutional funds and by NIH grant P30 ES005022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ah-Ng Tony Kong.

Ethics declarations

Conflicts of interests/Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr. David E. Smith honorary special issue of Pharmaceutical Research

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, R.M., Chou, P.J., Shannar, A. et al. An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention. Pharm Res 40, 2699–2714 (2023). https://doi.org/10.1007/s11095-023-03595-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03595-w

Keywords

Navigation