Skip to main content

Advertisement

Log in

Chlorin e6 Conjugated Methoxy-Poly(Ethylene Glycol)-Poly(D,L-Lactide) Glutathione Sensitive Micelles for Photodynamic Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this study, we developed a polymeric micellar system for glutathione-mediated intracellular delivery of a photosensitizer, chlorin e6 (Ce6) by synthesizing an amphiphilic polymer, methoxy-poly(ethylene glycol)-poly(D,L-lactide)-disulfide-Ce6 (mPEG-PLA-S-S-Ce6), which self-assembled in aqueous environment to form micelles.

Methods

The polymer-drug conjugate was characterized by NMR. The singlet oxygen (2O1) generation and in vitro release of Ce6 micelles were evaluated. Further, glutathione-mediated intracellular drug delivery was assessed in human alveolar adenocarcinoma cells (A549), mouse mammary carcinoma cells (4 T1) and 3D A549 spheroids.

Results

The micellar system protected Ce6 from aggregation leading to improved 2O1 generation compared to free Ce6. Due to the availability of glutathione, the disulfide bonds in the micelles were cleaved resulting in rapid release of Ce6 evident from the in vitro study. The Ce6 micelles displayed quicker drug release in presence of glutathione monoester (GSH-OEt) pre-treated A549 and 4 T1 cells compared to without pre-treated cells. In vitro phototoxicity of micelles displayed enhanced toxicity in 10 mM GSH-OEt pre-treated A549 and 4 T1 cells compared to untreated cells. As anticipated, Ce6 micelles showed lower drug release in presence of 0.1 mM of buthionine sulfoximine (BSO) pretreated A549 and 4 T1 cells exhibiting lower phototoxicity. Further, A549 3D spheroids treated with Ce6 micelles showed significant inhibition in growth, enhanced phototoxicity, and cellular apoptosis in comparison to free Ce6.

Conclusion

The above results showed that the developed strategy could be effective in improving the PDT efficacy of Ce6, and the developed polymeric micellar system could be utilized as a PDT regimen for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs J, Thiele J. The role of oxygen in cutaneous photodynamic therapy. Free Radic Biol Med. 1998;24(5):835–47.

    Article  CAS  PubMed  Google Scholar 

  3. Valenzeno DP. Photomodification of biological membranes with emphasis on singlet oxygen mechanisms. Photochem Photobiol. 1987;46(1):147–60.

    Article  CAS  PubMed  Google Scholar 

  4. Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B Biol. 1997;39(1):1–18.

    Article  CAS  Google Scholar 

  5. Ichikawa K, Hikita T, Maeda N, Yonezawa S, Takeuchi Y, Asai T, et al. Antiangiogenic photodynamic therapy (PDT) by using long-circulating liposomes modified with peptide specific to angiogenic vessels. Biochim Biophys Acta (BBA)-Biomembranes. 2005;1669(1):69–74.

    Article  CAS  Google Scholar 

  6. van Nostrum CF. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev. 2004;56(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  7. Schmitt F, Lagopoulos L, Käuper P, Rossi N, Busso N, Barge J, et al. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J Control Release. 2010;144(2):242–50.

    Article  CAS  PubMed  Google Scholar 

  8. Vaidya A, Sun Y, Feng Y, Emerson L, Jeong E-K, Lu Z-R. Contrast-enhanced MRI-guided photodynamic cancer therapy with a pegylated bifunctional polymer conjugate. Pharm Res. 2008;25(9):2002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wei H, Zhuo R-X, Zhang X-Z. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci. 2013;38(3–4):503–35.

    Article  CAS  Google Scholar 

  10. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–5.

    Article  CAS  PubMed  Google Scholar 

  11. Lee S-W, Chang D-H, Shim M-S, Kim B-O, Kim S-O, Seo M-H. Ionically fixed polymeric nanoparticles as a novel drug carrier. Pharm Res. 2007;24(8):1508–16.

    Article  CAS  PubMed  Google Scholar 

  12. Ko J, Park K, Kim Y-S, Kim MS, Han JK, Kim K, et al. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (β-amino ester) block copolymer micelles for cancer therapy. J Control Release. 2007;123(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release. 2008;129(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  14. Oh KT, Yin H, Lee ES, Bae YH. Polymeric nanovehicles for anticancer drugs with triggering release mechanisms. J Mater Chem. 2007;17(38):3987–4001.

    Article  CAS  Google Scholar 

  15. Liu J, Pang Y, Huang W, Zhu Z, Zhu X, Zhou Y, et al. Redox-responsive polyphosphate nanosized assemblies: a smart drug delivery platform for cancer therapy. Biomacromolecules. 2011;12(6):2407–15.

    Article  CAS  PubMed  Google Scholar 

  16. Hong R, Han G, Fernández JM, Kim B-J, Forbes NS, Rotello VM. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc. 2006;128(4):1078–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647–57.

    Article  CAS  PubMed  Google Scholar 

  18. Kumari P, Rompicharla SVK, Bhatt H, Ghosh B, Biswas S. Development of chlorin e6-conjugated poly (ethylene glycol)-poly (d, l-lactide) nanoparticles for photodynamic therapy. Nanomedicine. 2019;14(7):819–34.

    Article  CAS  PubMed  Google Scholar 

  19. Kumari P, Swami MO, Nadipalli SK, Myneni S, Ghosh B, Biswas S. Curcumin delivery by poly (Lactide)-based co-polymeric micelles: an in vitro anticancer study. Pharm Res. 2016;33(4):826–41.

    Article  CAS  PubMed  Google Scholar 

  20. Liu S-Q, Wiradharma N, Gao S-J, Tong YW, Yang Y-Y. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials. 2007;28(7):1423–33.

    Article  CAS  PubMed  Google Scholar 

  21. Li F, Na K. Self-assembled chlorin e6 conjugated chondroitin sulfate nanodrug for photodynamic therapy. Biomacromolecules. 2011;12(5):1724–30.

    Article  CAS  PubMed  Google Scholar 

  22. Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, et al. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, singlet oxygen sensor green®. J Exp Bot. 2006;57(8):1725–34.

    Article  CAS  PubMed  Google Scholar 

  23. Ragàs X, Cooper LP, White JH, Nonell S, Flors C. Quantification of photosensitized singlet oxygen production by a fluorescent protein. ChemPhysChem. 2011;12(1):161–5.

    Article  PubMed  CAS  Google Scholar 

  24. Hu F-Q, Jiang X-H, Huang X, Wu X-L, Yuan H, Wei X-H, et al. Enhanced cellular uptake of chlorine e6 mediated by stearic acid–grafted chitosan oligosaccharide micelles. J Drug Target. 2009;17(5):384–91.

    Article  CAS  PubMed  Google Scholar 

  25. Perche F, Torchilin VP. Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer Biol Ther. 2012;13(12):1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilhelm M, Zhao CL, Wang Y, Xu R, Winnik MA, Mura JL, et al. Poly (styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules. 1991;24(5):1033–40.

    Article  CAS  Google Scholar 

  27. Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release. 2001;74(1–3):47–61.

    Article  CAS  PubMed  Google Scholar 

  28. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  CAS  PubMed  Google Scholar 

  29. Liu P, Yue C, Sheng Z, Gao G, Li M, Yi H, et al. Photosensitizer-conjugated redox-responsive dextran theranostic nanoparticles for near-infrared cancer imaging and photodynamic therapy. Polym Chem. 2014;5(3):874–81.

    Article  CAS  Google Scholar 

  30. Gomes A, Fernandes E, Lima JL. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods. 2005;65(2):45–80.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Wang W, Yang J, Zhou C, Sun J. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J Pharm Sci. 2013;8(3):159–67.

    Article  Google Scholar 

  32. Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C, et al. Disulfide-cross-linked PEG-poly (amino acid) s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun. 2008;48:6570–2.

    Article  CAS  Google Scholar 

  33. Liebmann JE, Hahn SM, Cook JA, Lipschultz C, Mitchell JB, Kaufman DC. Glutathione depletion by L-buthionine sulfoximine antagonizes taxol cytotoxicity. Cancer Res. 1993;53(9):2066–70.

    CAS  PubMed  Google Scholar 

  34. Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev. 2014;69:29–41.

    Article  PubMed  CAS  Google Scholar 

  35. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 2012;164(2):192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6(5):4483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J. 2002;83(3):1650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de L Davies C, Berk D, Pluen A, Jain R. Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells. Br J Cancer. 2002;86(10):1639.

    Article  Google Scholar 

  39. Glidden MD, Celli JP, Massodi I, Rizvi I, Pogue BW, Hasan T. Image-based quantification of benzoporphyrin derivative uptake, localization, and photobleaching in 3D tumor models, for optimization of PDT parameters. Theranostics. 2012;2(9):827–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Byth HA, Mchunu BI, Dubery IA, Bornman L. Assessment of a simple, non-toxic alamar blue cell survival assay to monitor tomato cell viability. Phytochem Anal. 2001;12(5):340–6.

    Article  CAS  PubMed  Google Scholar 

  41. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R. The use of Alamar blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod. 2007;22(5):1304–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lancaster MV, Fields RD. Antibiotic and cytotoxic drug susceptibility assays using resazurin and poising agents. In: Google Patents; 1996.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Prof. Swati Biswas acknowledges Department of Science and Technology-Science and Engineering Research Board (DST-SERB) for providing research support through the core research grant (CRG/2018/001065). Preeti Kumari is thankful to the Deapartment of Science and Technology, Government of India for awarding her senior research fellowship (IF130703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Biswas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Paul, M., Bhatt, H. et al. Chlorin e6 Conjugated Methoxy-Poly(Ethylene Glycol)-Poly(D,L-Lactide) Glutathione Sensitive Micelles for Photodynamic Therapy. Pharm Res 37, 18 (2020). https://doi.org/10.1007/s11095-019-2750-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2750-0

KEY WORDS

Navigation