Skip to main content

Advertisement

Log in

Non-Propellant Foams of Green Nano-Silver and Sulfadiazine: Development and In Vivo Evaluation for Burn Wounds

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A non-propellant based foam (NPF) system was developed incorporating the antibiotics, pectin capped green nano-silver and sulfadiazine (SD) for the topical treatment of burn wounds as a convenient alternative to the existing therapies.

Methods

NPF were prepared using various surfactants and oils forming a nanoemulsion. Anti-microbial studies by resazurin microtitre assay, ex vivo diffusion, in vivo skin permeation and deposition studies, and acute irritation studies were carried out. NPF was applied onto secondary thermal wounds manifested on mice models followed by macroscopic and histological examinations.

Results

NPF had an average globule size of <75 nm. The viscosity was ~10 cP indicating the feasibility of expulsion from the container upon actuation. With no skin irritation, the foams showed a higher skin deposition of SD. A high contraction and an evident regeneration of the skin tissue upon treatment with NPF indicated a good recovery from the thermal injury was apparent from the histology studies.

Conclusion

NPF represents an alternative topical formulation that can be employed as a safe and effective treatment modality for superficial second degree (partial thickness) burn wounds. With a minimal requirement of mechanical force, the no-touch application of NPF makes it suitable for sensitive and irritant skin surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AgF:

Silver foam

AgSD:

Silver sulfadiazine

BLF:

Blank foam

nAg:

Nano-silver

nAgF:

Nano-silver foam

nAgSD:

Nano-silver sulfadiazine

NPF:

Non-propellant foams

PF:

Propellant foams

REMA:

Resazurin microtitre assay

RFD:

Relative foam density

SD:

Sulfadiazine

SDF:

Sulfadiazine foam

References

  1. O’Connor M, Wang JV, Gaspari AA. Cold burn injury after treatment at whole-body cryotherapy facility. JAAD Case Reports. 2019;5(1):29–30. https://doi.org/10.1016/j.jdcr.2018.10.006.

    Article  PubMed  Google Scholar 

  2. Nizamoglu M, Tan A, Vickers T, Segaren N, Barnes D, Dziewulski P. Cold burn injuries in the UK: the 11-year experience of a tertiary burns Centre. Burn trauma. 2016;4(1):36. https://doi.org/10.1186/s41038-016-0060-x.

    Article  Google Scholar 

  3. Torpy JM, Lynm C, Glass RM. Burn Injuries. JAMA. 2009;302(16):1828. https://doi.org/10.1001/jama.302.16.1828.

    Article  CAS  PubMed  Google Scholar 

  4. Schaefer TJ, Szymanski KD. Burn Evaluation And Management [Internet]. StatPearls. StatPearls Publishing; 2019 [accessed 20 May 2019, cited 25 May 2019]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430741/.

  5. Schaefer TJ, Tannan SC. Thermal Burns [Internet]. StatPearls. StatPearls Publishing; 2019 [accessed 20 May 2019, cited 25 May 2019]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430773/.

  6. Jozsa G, Vajda P, Garami A, Csenkey A, Juhasz Z. Treatment of partial thickness hand burn injuries in children with combination of silver foam dressing and zinc-hyaluronic gel. Medicine (Baltimore). 2018;97(13):e9991. https://doi.org/10.1097/MD.0000000000009991.

    Article  Google Scholar 

  7. Salibian AA, Del RAT, Severo LDAM, Nguyen L, Banyard DA, Toranto JD, et al. Current concepts on burn wound conversion-a review of recent advances in understanding the secondary progressions of burns. Burns. 2016;42(5):1025–35. https://doi.org/10.1016/j.burns.2015.11.007.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403–34. https://doi.org/10.1128/CMR.19.2.403-434.2006.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mirtič J, Papathanasiou F, Temova Rakuša Ž, GosencaMatjaž M, Roškar R, Kristl J. Development of medicated foams that combine incompatible hydrophilic and lipophilic drugs for psoriasis treatment. Int J Pharm. 2017;524(1–2):65–76. https://doi.org/10.1016/j.ijpharm.2017.03.061.

    Article  CAS  PubMed  Google Scholar 

  10. Frieder J, Kivelevitch D, Menter A. Calcipotriene betamethasone dipropionate aerosol foam in the treatment of plaque psoriasis: a review of the literature. Ther Deliv. 2017;8(9):737–46. https://doi.org/10.4155/tde-2017-0058.

    Article  CAS  PubMed  Google Scholar 

  11. Dauphin-Chanard E, Andre C, Hoste D, Marchaud D. Pharmaceutical foams with optimized microemulsion and propellant-free pump [internet]. Gattefosse. 2016.

  12. Zhao Y, Jones SA, Brown MB. Dynamic foams in topical drug delivery. J Pharm Pharmacol. 2010;62(6):678–84. https://doi.org/10.1211/jpp.62.06.0003.

    Article  CAS  PubMed  Google Scholar 

  13. Arzhavitina A, Steckel H. Foams for pharmaceutical and cosmetic application. Int J Pharm. 2010;394:1–2):1–17. https://doi.org/10.1016/j.ijpharm.2010.04.028.

    Article  CAS  PubMed  Google Scholar 

  14. Amissah NA, van Dam L, Ablordey A, Ampomah O-W, Prah I, Tetteh CS, et al. Epidemiology of Staphylococcus aureus in a burn unit of a tertiary care center in Ghana. de Lencastre H, editor. PLoS One. 2017;12(7):e0181072. https://doi.org/10.1371/journal.pone.0181072.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Azzopardi EA, Azzopardi E, Camilleri L, Villapalos J, Boyce DE, Dziewulski P, et al. Gram negative wound infection in hospitalised adult burn patients--systematic review and metanalysis. PLoS One. 2014;9(4):e95042. https://doi.org/10.1371/journal.pone.0095042.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cartotto R. Topical antimicrobial agents for pediatric burns. Burn Trauma. 2017;5(1):33. https://doi.org/10.1186/s41038-017-0096-6.

    Article  Google Scholar 

  17. Fox CL, Modak SM, Modak SM. Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother. 1974;5(6):582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sulfadiazine [Internet]. National Center for Biotechnology Information. PubChem Compound Database. U.S. National Library of Medicine [accessed 20 May 2019, cited 25 May 2019]. Available from: https://www.drugbank.ca/drugs/DB00359.

  19. Nímia HH, Carvalho VF, Isaac C, Souza FÁ, Gemperli R, Paggiaro AO. Comparative study of silver sulfadiazine with other materials for healing and infection prevention in burns: a systematic review and meta-analysis. Burns. 2018;45:282–92. https://doi.org/10.1016/j.burns.2018.05.014.

    Article  PubMed  Google Scholar 

  20. Mehrabani D, Farjam M, Geramizadeh B, Tanideh N, Amini M, Panjehshahin MR. The healing effect of curcumin on burn wounds in rat. World J Plast Surg. 2015;4(1):29–35.

    PubMed  PubMed Central  Google Scholar 

  21. Subrahmanyam M. Topical application of honey for burn wound treatment - an overview. Ann Burns Fire Disasters. 2007;20(3):137–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Madaghiele M, Sannino A, Ambrosio L, Demitri C. Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burn Trauma. 2014;2(4):153–61. https://doi.org/10.4103/2321-3868.143616.

    Article  Google Scholar 

  23. Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 2018;7(1):1–21. https://doi.org/10.1007/s40204-018-0083-4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Biopolymers. 2014;101(8):821–33. https://doi.org/10.1002/bip.22486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217–33. https://doi.org/10.1016/j.jare.2017.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Young-Seok S, Cutler E. Aqueous synthesis of Alkanethiolate-protected ag nanoparticles using Bunte salts. Langmuir. 2004;20(16):6626–30. https://doi.org/10.1021/LA049417Z.

    Article  Google Scholar 

  27. Seku K, Gangapuram BR, Pejjai B, Kadimpati KK, Golla N. Microwave-assisted synthesis of silver nanoparticles and their application in catalytic, antibacterial and antioxidant activities. J Nanostructure Chem. 2018;8(2):179–88. https://doi.org/10.1007/s40097-018-0264-7.

    Article  CAS  Google Scholar 

  28. Su D, Li P, Ning M, Li G, Shan Y. Microwave assisted green synthesis of pectin based silver nanoparticles and their antibacterial and antifungal activities. Mater Lett. 2019;244:35–8. https://doi.org/10.1016/J.MATLET.2019.02.059.

    Article  CAS  Google Scholar 

  29. Wang C, Gao X, Chen Z, Chen Y, Chen H. Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers (Basel). 2017;9(12). https://doi.org/10.3390/polym9120689.

  30. Kodoth AK, Ghate VM, Lewis SA, Prakash B, Badalamoole V. Pectin-based silver nanocomposite film for transdermal delivery of donepezil. Int J Biol Macromol. 2019;134:269–79. https://doi.org/10.1016/j.ijbiomac.2019.04.191.

    Article  CAS  PubMed  Google Scholar 

  31. Sökmen M, Alomar SY, Albay C, Serdar G. Microwave assisted production of silver nanoparticles using green tea extracts. J Alloys Compd. 2017;725:190–8. https://doi.org/10.1016/J.JALLCOM.2017.07.094.

    Article  Google Scholar 

  32. Kodoth AK, Ghate VM, Lewis SA, Badalamoole V. Application of pectin-zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism. Int J Biol Macromol. 2018;115:418–30. https://doi.org/10.1016/j.ijbiomac.2018.04.069.

    Article  CAS  PubMed  Google Scholar 

  33. De Baere S, Baert K, Croubels S, De Backer P, De Busser J, De Wasch K. Determination and quantification of sulfadiazine and trimethoprim in swine tissues using liquid chromatography with ultraviolet and mass spectrometric detection. Analyst. 2000;125(3):409–15. https://doi.org/10.1039/a908750h.

    Article  PubMed  Google Scholar 

  34. Ghate VM, Lewis SA, Prabhu P, Dubey A, Patel N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur J Pharm Biopharm. 2016;108:253–61. https://doi.org/10.1016/j.ejpb.2016.07.026.

    Article  CAS  PubMed  Google Scholar 

  35. Ghate VM, Kodoth AK, Raja S, Vishalakshi B, Lewis SA. Development of MART for the rapid production of nanostructured lipid carriers loaded with all-trans retinoic acid for dermal delivery. AAPS PharmSciTech. 2019;20(4):162. https://doi.org/10.1208/s12249-019-1307-1.

    Article  CAS  PubMed  Google Scholar 

  36. Osaka I, Hefty PS. Simple resazurin-based microplate assay for measuring chlamydia infections. Antimicrob Agents Chemother. 2013;57(6):2838–40. https://doi.org/10.1128/AAC.00056-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee S-H. Evaluation of acute skin irritation and phototoxicity by aqueous and ethanol fractions of Angelica keiskei. Exp Ther Med. 2013;5(1):45–50. https://doi.org/10.3892/etm.2012.782.

    Article  PubMed  Google Scholar 

  38. Kim KT, Kim JS, Kim M-H, Park J-H, Lee J-Y, Lee W, et al. Effect of enhancers on in vitro and in vivo skin permeation and deposition of S-methyl- L -methionine. Biomol Ther (Seoul). 2017;25(4):434–40. https://doi.org/10.4062/biomolther.2016.254.

    Article  CAS  Google Scholar 

  39. Aziz DE, Abdelbary AA, Elassasy AI. Fabrication of novel elastosomes for boosting the transdermal delivery of diacerein: statistical optimization, ex-vivo permeation, in-vivo skin deposition and pharmacokinetic assessment compared to oral formulation. Drug Deliv. 2018;25(1):815–26. https://doi.org/10.1080/10717544.2018.1451572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. El-Kased RF, Amer RI, Attia D, Elmazar MM. Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Sci Rep. 2017;7(1):9692. https://doi.org/10.1038/s41598-017-08771-8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Wei X, Liu L, Marti GP, Ghanamah MS, Arshad MJ, et al. Association of increasing burn severity in mice with delayed mobilization of circulating angiogenic cells. Arch Surg. 2010;145(3):259–66. https://doi.org/10.1001/archsurg.2009.285.

    Article  PubMed  Google Scholar 

  42. Medina JL, Fourcaudot AB, Sebastian EA, Shankar R, Brown AW, Leung KP. Standardization of deep partial-thickness scald burns in C57BL/6 mice. Int J Burns Trauma. 2018;8(2):26–33.

  43. Balachandran YL, Girija S, Selvakumar R, Tongpim S, Gutleb AC, Suriyanarayanan S. Differently environment stable bio-silver nanoparticles: study on their optical enhancing and antibacterial properties. PLoS One. 2013;8(10):e77043. https://doi.org/10.1371/journal.pone.0077043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pallavicini P, Arciola CR, Bertoglio F, Curtosi S, Dacarro G, D’Agostino, et al. Silver nanoparticles synthesized and coated with pectin: an ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J Colloid Interface Sci. 2017;498:271–81. https://doi.org/10.1016/j.jcis.2017.03.062

    Article  CAS  PubMed  Google Scholar 

  45. Lee J-S, Hong DY, Kim ES, Lee HG. Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation. Colloids Surfaces B Biointerfaces. 2017;154:171–7. https://doi.org/10.1016/j.colsurfb.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

  46. BeMiller JN. An Introduction to Pectins: Structure and Properties. In 1986. p. 2–12. doi:https://doi.org/10.1021/bk-1986-0310.ch001.

    Google Scholar 

  47. Chang R-K, Raw A, Lionberger R, Yu L. Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013;15(1):41–52. https://doi.org/10.1208/s12248-012-9411-0.

    Article  CAS  PubMed  Google Scholar 

  48. Vogel R, Pal AK, Jambhrunkar S, Patel P, Thakur SS, Reátegui E, et al. High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Sci Rep. 2017;7(1):17479. https://doi.org/10.1038/s41598-017-14981-x.

  49. Souza FN, Gebara C, Ribeiro MCE, Chaves KS, Gigante ML, Grosso CRF. Production and characterization of microparticles containing pectin and whey proteins. Food Res Int. 2012;49(1):560–6. https://doi.org/10.1016/J.FOODRES.2012.07.041.

    Article  CAS  Google Scholar 

  50. Kumar N, Mandal A. Surfactant stabilized oil-in-water Nanoemulsion: stability, interfacial tension, and rheology study for enhanced oil recovery application. Energy Fuel. 2018;32(6):6452–66. https://doi.org/10.1021/acs.energyfuels.8b00043.

    Article  CAS  Google Scholar 

  51. Junker JPE, Kamel RA, Caterson EJ, Eriksson E. Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv wound care. 2013;2(7):348–56. https://doi.org/10.1089/wound.2012.0412.

    Article  Google Scholar 

  52. Zhai H, Maibach HI. Effect of occlusion and semi-occlusion on experimental skin wound healing: a reevaluation. Wounds a Compend Clin Res Pract. 2007;19(10):270–6.

  53. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brocklehurst TF, Wilson PDG, Wilson PDG. The role of lipids in controlling microbial growth. Grasas Aceites. 2000;51(1–2):66–73. https://doi.org/10.3989/gya.2000.v51.i1-2.408.

    Article  CAS  Google Scholar 

  55. Cui S, Han L, Xiao S, Chen X, Chang Q, Liu Y, et al. Investigation of antibacterial activity of topical antimicrobials against methicillin-resistant Staphylococcus aureus. Zhonghua Shao Shang Za Zhi. 2014;30(1):21–4.

  56. Sevgi M, Toklu A, Vecchio D, Hamblin MR. Topical antimicrobials for burn infections - an update. Recent Pat Antiinfect Drug Discov. 2013;8(3):161–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018;16(1):14. https://doi.org/10.1186/s12951-018-0334-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Minzanova ST, Mironov VF, Mironova LG, Nizameev IR, Kholin KV, Voloshina AD, et al. Synthesis, properties, and antimicrobial activity of pectin complexes with cobalt and nickel. Chem Nat Compd. 2016;52(1):26–31. https://doi.org/10.1007/s10600-016-1539-1.

    Article  CAS  Google Scholar 

  59. Todo H. Transdermal permeation of drugs in various animal species. Pharmaceutics. 2017;9(4):33. https://doi.org/10.3390/pharmaceutics9030033.

    Article  CAS  PubMed Central  Google Scholar 

  60. Queille-Roussel C, Olesen M, Villumsen J, Lacour J-P. Efficacy of an innovative aerosol foam formulation of fixed combination calcipotriol plus betamethasone dipropionate in patients with psoriasis vulgaris. Clin Drug Investig. 2015;35(4):239–45. https://doi.org/10.1007/s40261-015-0269-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abd E, Namjoshi S, Mohammed YH, Roberts MS, Grice JE. Synergistic skin penetration enhancer and Nanoemulsion formulations promote the human epidermal permeation of caffeine and naproxen. J Pharm Sci. 2016;105(1):212–20. https://doi.org/10.1002/jps.24699.

    Article  CAS  PubMed  Google Scholar 

  62. Giusto G, Vercelli C, Comino F, Caramello V, Tursi M, Gandini M. A new, easy-to-make pectin-honey hydrogel enhances wound healing in rats. BMC Complement Altern Med. 2017;17(1):266. https://doi.org/10.1186/s12906-017-1769-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zomer HD, Trentin AG. Skin wound healing in humans and mice: challenges in translational research. J Dermatol Sci. 2018;90(1):3–12. https://doi.org/10.1016/j.jdermsci.2017.12.009.

    Article  PubMed  Google Scholar 

  64. Calum H, Høiby N, Moser C. Mouse model of burn wound and infection: thermal (hot air) lesion-induced immunosuppression. In: Current protocols in mouse biology. Hoboken, NJ, vol. 7. USA: John Wiley & Sons, Inc.; 2017. p. 77–87. https://doi.org/10.1002/cpmo.25.

    Chapter  Google Scholar 

  65. Abdullahi A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci. 2014;71(17):3241–55. https://doi.org/10.1007/s00018-014-1612-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chhibber T, Wadhwa S, Chadha P, Sharma G, Katare O. Phospholipid structured microemulsion as effective carrier system with potential in methicillin sensitive Staphylococcus aureus (MSSA) involved burn wound infection. J Drug Target. 2015;23(10):943–52. https://doi.org/10.3109/1061186X.2015.1048518.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gattefossé India Pvt. Ltd, Mumbai for providing generous samples of Labrasol®, Plurol Oleique CC 497® and Labrafac Lipophile WL 1349® for carrying out the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaila A. Lewis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurowska, A., Ghate, V., Kodoth, A. et al. Non-Propellant Foams of Green Nano-Silver and Sulfadiazine: Development and In Vivo Evaluation for Burn Wounds. Pharm Res 36, 122 (2019). https://doi.org/10.1007/s11095-019-2658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2658-8

KEY WORDS

Navigation