Skip to main content
Log in

An Effective Technology for the Development of Immediate Release Solid Dosage Forms Containing Low-Dose Drug: Fused Deposition Modeling 3D Printing

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Fabrication of immediate release (IR) tablet formulations with rapid release profile via fused deposition modeling 3D printing (FDM 3DP) is a challenge. The aims of this study were to prepare IR tablets with different dissolution profiles and to increase their in vitro dissolution rates by making physical modifications on them. Pramipexole was used as the model low-dose drug.

Methods

Polymeric filaments were prepared with six different combinations of Eudragit EPO and poly(ethylene) oxide by hot melt extrusion and 3D tablets were produced using an FDM printer. Characterization studies for the filaments and tablets were carried out. The printability of the filaments was also evaluated using a novel mechanical characterization method. Tablet formulation with optimum dissolution profile was chosen and physical modifications (infill %, shape change and thickness) on this formulation were made.

Results

Low-dose pramipexole loading filaments and 3D tablets were homogenously prepared. The printability of the filaments was related to their flexibility. With the physical modifications, the drug release completion time of the tablets reduced to 5 min.

Conclusions

The same rapid release profiles with conventional IR tablets can be reached by making only physical changes on 3D tablets without using any filling or disintegrating agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3DP:

3D printing

ABS:

Acrylonitrile butadiene styrene

AM:

Additive manufacturing

API:

Active pharmaceutical ingredient

CAD:

Computer aided design

DSC:

Differential scanning calorimetry

FDM:

Fused deposition modeling

HME:

Hot melt extrusion

IR:

Immediate release

PC:

Polycarbonate

PCL:

Poly(ε-caprolactone)

PLA:

Polylactic acid

PPD:

Pramipexole dihydrochloride monohydrate

PVA:

Polyvinyl alcohol

RP:

Rapid prototyping

SEM:

Scanning electron microscopy

References

  1. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240–53.

    Article  CAS  Google Scholar 

  2. Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Tec. 2015;30:360–7.

    Article  CAS  Google Scholar 

  3. Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    Article  CAS  Google Scholar 

  4. Voelker R. The printed pill. JAMA. 2015;314:1108.

    Google Scholar 

  5. Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Tec. 2017;40:164–71.

    Article  CAS  Google Scholar 

  6. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1–2):207–12.

    Article  CAS  Google Scholar 

  7. Nandwana P, Elliott AM, Siddel D, Merriman A, Peter WH, Babu SS. Powder bed binder jet 3D printing of Inconel 718: densification, microstructural evolution and challenges. Curr Opin Solid St M. 2017;21(4):207–18.

    Article  CAS  Google Scholar 

  8. Lee JY, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120–33.

    Article  Google Scholar 

  9. Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm. 2016;514(1):290–5.

    Article  CAS  Google Scholar 

  10. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23:1547–55.

    Article  CAS  Google Scholar 

  11. Novakova-Marcincinova L, Kuric I. Basic and advanced materials for fused deposition modeling rapid prototyping technology. Manuf and Ind Eng. 2012;11(1):24–7.

    Google Scholar 

  12. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53–63.

    Article  CAS  Google Scholar 

  13. Repka MA, Battu SK, Upadhye SB, Thumma CMM, Zhang F, Martin C, et al. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm. 2007;33(10):1043–57.

    Article  CAS  Google Scholar 

  14. Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–20.

    Article  CAS  Google Scholar 

  15. Holländer J, Genina N, Jukarainen H, Khajeheian M, Rosling A, Mäkilä E, et al. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. J Pharm Sci. 2016;105(9):2665–76.

    Article  Google Scholar 

  16. Lim SH, Chia SMY, Kang L, Yap KYL. Three-dimensional printing of carbamazepine sustained-release scaffold. J Pharm Sci. 2016;105(7):2155–63.

    Article  CAS  Google Scholar 

  17. Jamróz W, Kurek M, Łyszczarz E, Szafraniec J, Knapik-Kowalczuk J, Syrek K, et al. 3D printed orodispersible films with aripiprazole. Int J Pharm. 2017;533(2):413–20.

    Article  Google Scholar 

  18. Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur J Pharm Sci. 2018;118:134–43.

    Article  CAS  Google Scholar 

  19. Melocchi A, Parietti F, Maccagnan S, Ortenzi MA, Antenucci S, Briatico-Vangosa F, et al. Industrial development of a 3D-printed nutraceutical delivery platform in the form of a multicompartment HPC capsule. AAPS Pharm Sci Tech. 2018;19(8):3343–54.

    Article  CAS  Google Scholar 

  20. Gioumouxouzis CI, Baklavaridis A, Katsamenis OL, Markopoulou CK, Bouropoulos N, Tzetzis D, et al. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur J Pharm Sci. 2018;120:40–52.

    Article  CAS  Google Scholar 

  21. Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527:161–70.

    Article  CAS  Google Scholar 

  22. Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, et al. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep. 2017;7:2829.

    Article  Google Scholar 

  23. Kempin W, Domsta V, Grathoff G, Brecht I, Semmling B, Tillmann S, et al. Immediate release 3D-printed tablets produced via fused deposition modeling of a Thermo-sensitive drug. Pharm Res. 2018;35(6):124.

    Article  Google Scholar 

  24. Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355–63.

    Article  CAS  Google Scholar 

  25. Arafat B, Wojsz M, Isreb A, Forbes RT, Isreb M, Ahmed W, et al. Tablet fragmentation without a disintegrant: a novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur J Pharm Sci. 2018;118:191–9.

    Article  CAS  Google Scholar 

  26. Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    Article  CAS  Google Scholar 

  27. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.

    Article  CAS  Google Scholar 

  28. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–7.

    Article  CAS  Google Scholar 

  29. Pawar SM, Khatal LD, Gabhe SY, Dhaneshwar SR. Establishment of inherent stability of pramipexole and development of validated stability indicating LC–UV and LC–MS method. J Pharm Anal. 2013;3(2):109–17.

    Article  CAS  Google Scholar 

  30. CHMP Assessment Report.; accessed 22 January 2019 . Available from: https://www.ema.europa.eu/documents/assessment-report/pramipexole-teva-epar-public-assessment-report_en.pdf.

  31. Pramipexole Accord, EMA.; accessed 7 January 2019. Available from: https://www.ema.europa.eu/documents/assessment-report/pramipexole-accord-epar-public-assessment-report_en.pdf.

  32. Putri RSI, Setiawati E, Aziswan SA, Ong F, Tjandrawinata RR, Susanto LW. A comparative pharmacokinetics study of the anti-parkinsonian drug Pramipexole. Sci Pharm. 2016;84(4):715–23.

    Article  CAS  Google Scholar 

  33. Mirapex® - FDA.; accessed 22 January 2019. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020667s014s017s018lbl.pdf.

  34. Khaled SA, Alexander MR, Irvine DJ, Wildman RD, Wallace MJ, Sharpe S, et al. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS Pharm Sci Tech. 2018;19(8):3403–13.

    Article  CAS  Google Scholar 

  35. Skalsky B, Petereit HU. Chemistry and application properties of polymethacrylate systems. In: Mc Ginity JW, Felton LA, editors. Aqueous polymeric coatings for pharmaceutical dosage forms, 3rd ed., NY: Informa healthcare USA; 2008. p. 237–78.

    Google Scholar 

  36. Pradhan R, Kim SY, Yong CS, Kim JO. Preparation and characterization of spray-dried valsartan-loaded Eudragit® E PO solid dispersion microparticles. Asian J Pharm. 2016;11(6):744–50.

    Google Scholar 

  37. Pawar HV, Tetteh J, Boateng JS. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B: Biointerfaces. 2013;102:102–10.

    Article  CAS  Google Scholar 

  38. POLYOX Water-Soluble Resins NF in Pharmaceutical Applications.; accessed 22 January 2019. Available from: http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0171/0901b80380171e3a.pdf?filepath=polyox/pdfs/noreg/326-00013.pdf%26fromPage=GetDoc.

  39. Dow Answer Center.; accessed 22 January 2019. Available from: https://dowac.custhelp.com/app/answers/detail/a_id/1379.

  40. Zhang J, Feng X, Patil H, Tiwari RV, Repka MA. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519(1):186–97.

    Article  CAS  Google Scholar 

  41. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–8.

    Article  CAS  Google Scholar 

  42. Sereewat P, Suthipinittham C, Sumathaluk S, Puttanlek C, Uttapap D, Rungsardthong V. Cooking properties and sensory acceptability of spaghetti made from rice flour and defatted soy flour. LWT-Food Sci Technol. 2015;60(2):1061–7.

    Article  CAS  Google Scholar 

  43. Sadia M, Sośnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm. 2016;513(1):659–68.

    Article  CAS  Google Scholar 

  44. POLYOX Water-Soluble Resins.; accessed 6 January 2019. Available from: http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_094e/0901b8038094e22f.pdf?filepath=/326-00001.pdf%26fromPage=GetDoc.

  45. European Pharmacopoeia (Ph Eur). 2014. Strasbourg, France: Euro-pean Directorate for the Quality of Medicines, Council of Europe.

  46. Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan KW, Alhnan MA. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res. 2016;33:2704–12.

    Article  CAS  Google Scholar 

  47. Solanki NG, Tahsin M, Shah AV, Serajuddin AT. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and printability. J Pharm Sci. 2018;107(1):390–401.

    Article  CAS  Google Scholar 

  48. Ajmal A, Meskarzadeh A, Genina N, Hirschberg C, Boetker JP, Rantanen J. The use of 3D printed molds to cast tablets with a designed disintegration profile. AAPS Pharm Sci Tech. 2019;20(3):127.

    Article  Google Scholar 

  49. Dissolution Testing and Acceptance Criteria for Immediate-Release Solid Oral Dosage Form Drug Products Containing High Solubility Drug Substances.; accessed 15 May 2019. Available from: https://www.fda.gov/media/92988/download.

Download references

Acknowledgments and Disclosures

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (grant number 217S456). The authors are thankful to Deva Pharmaceuticals (Turkey) for donating pramipexole dihydrochloride monohydrate, to Karadeniz Pharmaceutical Warehouse (Turkey) for providing Eudragit EPO and to Colorcon (Turkey) for providing POLYOXTM derivatives. None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Füsun Acartürk.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gültekin, H.E., Tort, S. & Acartürk, F. An Effective Technology for the Development of Immediate Release Solid Dosage Forms Containing Low-Dose Drug: Fused Deposition Modeling 3D Printing. Pharm Res 36, 128 (2019). https://doi.org/10.1007/s11095-019-2655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2655-y

Key words

Navigation