Skip to main content

Advertisement

Log in

Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Griffin JT, Ferguson NM, Ghani AC. Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa. Nat Commun. 2014;5:1–10.

    Google Scholar 

  2. Walker NF, Nadjm B, Whitty CJM. Malaria. Medicine. 2010;38:41–6.

    Google Scholar 

  3. Phillips MA, Burrows JN, Manyando C, Van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Primers 2017;3(17050).

  4. World Health Organization. Guidelines for the treatment of Malaria. Guidelines For The Treatment of Malaria. 2015. http://www.who.int/malaria/publications/atoz/9789241549127/en/

  5. Hill J, Lines J, Rowland M. Insecticide-Treated Nets. Adv Parasitol. 2006;61:77–128.

    PubMed  Google Scholar 

  6. Thu AM, Phyo AP, Landier J, Parker DM, Nosten FH. Combating multidrug-resistant Plasmodium falciparum malaria. Vol. 284, FEBS Journal. 2017. p. 2569–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Battle KE, Cameron E, Guerra CA, Golding N, Duda KA, Howes RE, et al. Defining the relationship between Plasmodium vivax parasite rate and clinical disease. Malar J. 2015;14(1):1–14.

    Google Scholar 

  8. Collins WE, Jeffery GM. Plasmodium ovale: Parasite and Disease. Clin Microbiol Rev. 2005;18(3):570–81.

    PubMed  PubMed Central  Google Scholar 

  9. Collins WE, Jeffery GM. Plasmodium malariae: Parasite and Disease. Clin Microbiol Rev. 2007;20(4):579–92.

    PubMed  PubMed Central  Google Scholar 

  10. Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM. World Malaria Report : time to acknowledge Plasmodium knowlesi malaria. Malar J. 2017:13–5.

  11. Tilley L, Dixon MWA, Kirk K. The Plasmodium falciparum-infected red blood cell. Int J Biochem Cell Biol. 2011;43(6):839–42.

    CAS  PubMed  Google Scholar 

  12. Crawley J, Chu C, Nosten F, Mtove G. Malaria in children. Lancet. 2010;375(9724):1468–81.

    PubMed  Google Scholar 

  13. Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, et al. Investigating the pathogenesis of severe malaria: A multidisciplinary and cross-geographical approach. Am J Trop Med Hyg. 2015;93(Suppl 3):42–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cowman AF, Healer J, Marapana D, Marsh K. Malaria: biology and disease. Cell. Elsevier Inc. 2016;167:610–24.

    CAS  PubMed  Google Scholar 

  15. Miller LH, Ackerman HC, Su X, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013;19(2):156–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Butler AR, Khan S, Ferguson E. A brief history of malaria chemotherapy. J R Coll Physicians Edinb. 2010;40(2):172–7.

    CAS  PubMed  Google Scholar 

  17. Burns WR. East meets West: how China almost cured malaria. Endeavour. 2008;32(3):101–6.

    CAS  PubMed  Google Scholar 

  18. Chenette EJ. Recent buzz in malaria research. FEBS J. 2017;284:2556–9.

    CAS  PubMed  Google Scholar 

  19. Bosman A, Mendis KN. A major transition in malaria treatment: The adoption and deployment of artemisinin-based combination therapies. Am J Trop Med Hyg. 2007;77(SUPPL. 6):193–7.

    PubMed  Google Scholar 

  20. WHO. ANTIMALARIAL DRUG COMBINATION THERAPY Report of a WHO Technical Consultation [Internet]. World Health Organization, Geneva WHO. 2001. Available from: http://www.rbm.who.int/

  21. Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem. 2017;125:1300–20.

    CAS  PubMed  Google Scholar 

  22. Quiliano M, Mendoza A, Fong KY, Pabón A, Goldfarb NE, Fabing I, et al. Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. Int J Parasitol Drugs Drug Resist. 2016;6(3):184–98.

    PubMed  PubMed Central  Google Scholar 

  23. Lee MR. Plants against malaria. Part 1: Cinchona or the Peruvian bark. JRCollPhysicians Edinb. 2002;32(3):189–96.

    CAS  Google Scholar 

  24. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10(1):144.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin Pharmacokinet. 1996;30:263–99.

    CAS  PubMed  Google Scholar 

  26. Paintaud G, Alvan G, Ericsson O. The reproducibility of quinine bioavailability. Br J Clin Pharmacol. 1993;35(3):305–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. White NJ, Looareesuwan S, Warrell DA, Warrell MJ, Bunnag D, Harinasuta T. Quinine pharmacokinetics and toxicity in cerebral and uncomplicated falciparum malaria. Am J Med. 1982;73(4):564–72.

    CAS  PubMed  Google Scholar 

  28. Mirghani RA, Hellgren U, Bertilsson L, Gustafsson LL, Ericsson Ö. Metabolism and elimination of quinine in healthy volunteers. Eur J Clin Pharmacol. 2003;59(5–6):423–7.

    CAS  PubMed  Google Scholar 

  29. Bateman DN, Dyson EH. Quinine toxicity. Adverse Drug React Acute Poisoning Rev. 1986;5(4):215–33.

    CAS  PubMed  Google Scholar 

  30. Howard MA, Hibbard AB, Terrell DR, Medina PJ, Vesely SK, George JN. Quinine allergy causing acute severe systemic illness: report of 4 patients manifesting multiple hematologic, renal, and hepatic abnormalities. Proc (Bayl Univ Med Cent). 2003;16(1):21–6.

    Google Scholar 

  31. Price RN, Uhlemann A-C, van Vugt M, Brockman A, Hutagalung R, Nair S, et al. Molecular and Pharmacological Determinants of the Therapeutic Response to Artemether-Lumefantrine in Multidrug-Resistant Plasmodium falciparum Malaria. Clin Infect Dis. 2006;42(11):1570–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Warhurst DC, Adagu IS, Beck HP, Duraisingh MT, Kirby GC, von Seidlein L, et al. Mode of action of artemether lumefantrine (COARTEM): The sole, fixid, oral ADCC and its role in combatting multidrug resistance. Southeast Asian J Trop Med Public Health. 2001;32(January):4–8.

    Google Scholar 

  33. Van Vugt M, Wilairatana P, Gemperli B, Gathmann I, Phaipun L, Brockman A, et al. Efficacy of six doses of artemether-lumefantrine (benflumetol) in multidrug-resistant Plasmodium falciparum malaria. Am J Trop Med Hyg. 1999;60(6):936–42.

    CAS  PubMed  Google Scholar 

  34. Wong RPM, Salman S, Ilett KF, Siba PM, Mueller I, Davis TME. Desbutyl-lumefantrine is a metabolite of lumefantrine with potent in vitro antimalarial activity that may influence artemether-lumefantrine treatment outcome. Antimicrob Agents Chemother. 2011;55(3):1194–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schlagenhauf P, Adamcova M, Regep L, Schaerer MT, Rhein HG. The position of mefloquine as a 21st century malaria chemoprophylaxis. Malar J. 2010;9(1):357.

    PubMed  PubMed Central  Google Scholar 

  36. Schlagenhauf P, Hatz C, Behrens R, Visser L, Funk M, Holzer B, et al. Mefloquine at the crossroads? Implications for malaria chemoprophylaxis in Europe. Travel Med Infect Dis. 2015 Mar 1;13(2):192–6.

    PubMed  Google Scholar 

  37. Schlagenhauf P, Johnson R, Schwartz E, Nothdurft HD, Steffen R. Evaluation of mood profiles during malaria chemoprophylaxis: A randomized, double-blind, four-arm study. J Travel Med. 2009;16(1):42–5.

    PubMed  Google Scholar 

  38. Schlagenhauf P. Tolerability of malaria chemoprophylaxis in non-immune travellers to sub-Saharan Africa: multicentre, randomised, double blind, four arm study. Bmj. 2003;327(7423):1078–0.

    PubMed  PubMed Central  Google Scholar 

  39. Lobel HO, Campbell CC, Hightower AH, Eng T, Miani M, Eng T, et al. Long-term malaria prophylaxis with weekly mefloquine. Lancet. 1993 Apr 3;341(8849):848–51.

    CAS  PubMed  Google Scholar 

  40. Nosten F, Ter Kuile FO, Luxemburger C, Woodrow C, Kyle DE, Chongsuphajaisiddhi T, et al. Cardiac effects of antimalarial treatment with halofantrine. Lancet. 1993 Apr 24;341(6):1054–6.

    CAS  PubMed  Google Scholar 

  41. Meshnick SR, Dobson MJ. The History of Antimalarial Drugs. In: Rosenthal PJ, editor. Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery. Totowa: Humana Press Inc.; 2001. p. 15–25.

  42. Combrinck JM, Mabotha TE, Ncokazi KK, Ambele MA, Taylor D, Smith PJ, et al. Insights into the Role of Heme in the Mechanism of Action of Antimalarials. Acs Chem Biol. 2013;8(1):133–7.

    CAS  PubMed  Google Scholar 

  43. Sullivan DJ, Matile H, Ridley G, Goldberg DE, Ridley RG. Cell biology and metabolism : A common mechanism for blockade of heme polymerization by antimalarial quinolines. J Biol Chem. 1998;273(47):31103–7.

    CAS  PubMed  Google Scholar 

  44. Manohar S, Tripathi M, Rawat DS. 4-aminoquinoline based molecular hybrids as antimalarials: An overview. Curr Top Med Chem. 2014;14:1706–33.

    CAS  PubMed  Google Scholar 

  45. Al-Bari AA. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2014;70(6):1608–21.

    Google Scholar 

  46. Ademowo OG, Sodeinde O. Certain red cell genetic factors and prevalence of chloroquine-induced pruritus. Afr J Med Med Sci. 2002;31(4):341–3.

    CAS  PubMed  Google Scholar 

  47. White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10(1):297.

    PubMed  PubMed Central  Google Scholar 

  48. Lanners HN. Effect of the 8-aminoquinoline primaquine on culture-derived gametocytes of the malaria parasite Plasmodium falciparum. Parasitol Res. 1991;77(6):478–81.

    CAS  Google Scholar 

  49. Baird JK, Hoffman SL. Primaquine Therapy for Malaria. Clin Infect Dis. 2004;39(9):1336–45.

    CAS  PubMed  Google Scholar 

  50. Awab GR, Imwong M, Bancone G, Jeeyapant A, Day NPJ, White NJ, et al. Chloroquine-primaquine versus chloroquine alone to treat vivax malaria in Afghanistan: An open randomized superiority trial. Am J Trop Med Hyg. 2017;97(6):1782–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez-Ceron L, Rodriguez MH, Sandoval MA, Santillan F, Galindo-Virgen S, Betanzos AF, et al. Effectiveness of combined chloroquine and primaquine treatment in 14 days versus intermittent single dose regimen, in an open, non-randomized, clinical trial, to eliminate Plasmodium vivax in southern Mexico. Malar J. 2015;14:426.

  52. Constantino L, Paixão P, Moreira R, Portela MJ, Do Rosario VE, Iley J. Metabolism of primaquine by liver homogenate fractions. Exp Toxicol Pathol. 1999;51(4–5):299–303.

    CAS  PubMed  Google Scholar 

  53. Mihaly G, Ward S, Edwards G, Nicholl D, Orme M, Breckenridge A. Pharmacokinetics of primaquine in man. I. Studies of the absolute bioavailability and effects of dose size. Br J Clin Pharmacol. 1985;19(6):745–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ashley E, Recht J, White N. Primaquine: the risks and the benefits. Malar J. 2014;13(1):418.

    PubMed  PubMed Central  Google Scholar 

  55. Thomas D, Tazerouni H, Sundararaj KGS, Cooper JC. Therapeutic failure of primaquine and need for new medicines in radical cure of Plasmodium vivax. Acta Trop. 2016;160:35–8.

    CAS  PubMed  Google Scholar 

  56. Roth EF, Schulman S, Vanderberg J, Olson J. Pathways for the reduction of oxidized glutathione in the Plasmodium falciparum-infected erythrocyte: can parasite enzymes replace host red cell glucose-6-phosphate dehydrogenase? Blood. 1986;67:827–30.

    CAS  PubMed  Google Scholar 

  57. Beutler E, Yeh M, Fairbanks VF. The normal human female as a mosaic of X-chromosome activity: studies using the gene for G-6-PD-deficiency as a marker. Proc Natl Acad Sci U S A. 1962;48:9–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371(9606):64–74.

    CAS  PubMed  Google Scholar 

  59. Uyoga S, Ndila CM, Macharia AW, Nyutu G, Shah S, Peshu N, et al. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: A case-control and a cohort study. Lancet Haematol. 2015;2(10):437–44.

    Google Scholar 

  60. Manjurano A, Sepulveda N, Nadjm B, Mtove G, Wangai H, Maxwell C, et al. African Glucose-6-Phosphate Dehydrogenase Alleles Associated with Protection from Severe Malaria in Heterozygous Females in Tanzania. PLoS Genet. 2015;11(2):1–14.

    Google Scholar 

  61. Shah SS, Rockett KA, Jallow M, Sisay-Joof F, Bojang KA, Pinder M, et al. Heterogeneous alleles comprising G6PD deficiency trait in West Africa exert contrasting effects on two major clinical presentations of severe malaria. Malar J. 2016;15(1):1–8.

    Google Scholar 

  62. WHO. Updated WHO policy recommendation: Single dose primaquine as a gametocytocide in Plasmodium falciparum malaria [Internet]. 2012. Available from: http://www.who.int/malaria/mpac

  63. Bancone G, Chowwiwat N, Somsakchaicharoen R, Poodpanya L, Moo PK, Gornsawun G, et al. Single low dose primaquine (0.25mg/kg) does not cause clinically significant haemolysis in G6PD deficient subjects. PLoS One. 2016;11(3):1–12.

    Google Scholar 

  64. Elmes NJ, Nasveld PE, Kitchener SJ, Kocisko DA, Edstein MD. The efficacy and tolerability of three different regimens of tafenoquine versus primaquine for post-exposure prophylaxis of Plasmodium vivax malaria in the Southwest Pacific. Trans R Soc Trop Med Hyg. 2008;102(11):1095–101.

    CAS  PubMed  Google Scholar 

  65. Li Q, Neil MO, Xie L, Caridha D, Zeng Q, Zhang J, et al. Assessment of the prophylactic activity and pharmacokinetic profile of oral tafenoquine compared to primaquine for inhibition of liver stage malaria infections. Malar J. 2014;13(1):1–13.

    PubMed  PubMed Central  Google Scholar 

  66. Schlitzer M. Antimalarial drugs - What is in use and what is in the pipeline. Archiv Pharm. 2008;341:149–63.

    CAS  PubMed  Google Scholar 

  67. Kemirembe K, Cabrera M, Cui L. Interactions between tafenoquine and artemisinin-combination therapy partner drug in asexual and sexual stage Plasmodium falciparum. Int J Parasitol Drugs Drug Resist. 2017;7(2):131–7.

    PubMed  Google Scholar 

  68. Pandey AV, Tekwani BL, Singh RL, Chauhan VS. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem. 1999;274(27):19383–8.

    CAS  PubMed  Google Scholar 

  69. Meshnick SR, Taylor TE, Kamchonwongpaisan S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev. 1996;60(2):301–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chaturvedi D, Goswami A, Saikia PP, Barua NC, Rao PG. Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem Soc Rev. 2010;39(2):435–54.

    CAS  PubMed  Google Scholar 

  71. World Health Organization. World Malaria Report 2017. ECOS. 2017.

  72. Kolaczinski K, Durrani N, Rahim S, Rowland M. Sulfadoxine-pyrimethamine plus artesunate compared with chloroquine for the treatment of vivax malaria in areas co-endemic for Plasmodium falciparum and P. vivax: a randomised non-inferiority trial in eastern Afghanistan. Trans R Soc Trop Med Hyg. 2007;101(11):1081–7.

    CAS  PubMed  Google Scholar 

  73. Meshnick SR. Artemisinin: Mechanisms of action, resistance and toxicity. In: International Journal for Parasitology; 2002. p. 1655–60

    Google Scholar 

  74. Wang J, Zhang CJ, Chia WN, CCY L, Li Z, Lee YM, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun. 2015;6(10111).

  75. Lisewski AM, Quiros JP, Ng CL, Adikesavan AK, Miura K, Putluri N, et al. Supergenomic network compression and the discovery of exp1 as a glutathione transferase inhibited by artesunate. Cell. 2014;158(4):916–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Krishna S, Uhlemann AC, Haynes RK. Artemisinins: mechanisms of action and potential for resistance. Drug Resistance Updates. 2004;7:233–44.

    CAS  PubMed  Google Scholar 

  77. Golenser J, Waknine JH, Krugliak M, Hunt NH, Grau GE. Current perspectives on the mechanism of action of artemisinins. Int J Parasitol. 2006;36:1427–41.

    CAS  PubMed  Google Scholar 

  78. Gopalakrishnan AM, Kumar N. Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species. Antimicrob Agents Chemother. 2015;59(1):317–25.

    PubMed  PubMed Central  Google Scholar 

  79. Lee I-S, Hufford CD. Metabolism of antimalarial sesquiterpene lactones. Pharmacol Ther. 1990;48(3):345–55.

    CAS  PubMed  Google Scholar 

  80. Medhi B, Patyar S, Rao RS, Byrav Ds P, Prakash A. Pharmacokinetic and toxicological profile of artemisinin compounds: An update. Pharmacology. 2009;84(6):323–32.

    CAS  PubMed  Google Scholar 

  81. Navaratnam V, Mansor SM, Sit NW, Grace J, Li Q, Olliaro P. Pharmacokinetics of artemisinin-type compounds. Clinical Pharmacokinetics. 2000;39:255–70.

    CAS  PubMed  Google Scholar 

  82. Bhattacharjee AK, Karle JM. Stereoelectronic properties of antimalarial artemisinin analogues in relation to neurotoxicity. Chem Res Toxicol. 1999;12(5):422–8.

    CAS  PubMed  Google Scholar 

  83. Brewer TG, Grate SJ, Peggins JO, Weina PJ, Petras JM, Levine BS, et al. Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hyg. 1994 Sep;51(3):251–9.

    CAS  PubMed  Google Scholar 

  84. Petras JM, Kyle DE, Gettayacamin M, Young GD, Bauman RA, Webster HK, et al. Arteether: Risks of two-week administration in Macaca mulatta. Am J Trop Med Hyg. 1997;56(4):390–6.

    CAS  PubMed  Google Scholar 

  85. Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann HD, Chan HW, et al. Artemisone - A highly active antimalarial drug of the artemisinin class. Angew Chemie - Int Ed. 2006;45(13):2082–8.

    CAS  Google Scholar 

  86. Vishwakarma RA, Mehrotra R, Tripathi R, Dutta GP. Stereoselective synthesis and antimalarial activity of alpha-artelinic acid from artemisinin. J Nat Prod. 1992;55(8):1142–4.

    CAS  PubMed  Google Scholar 

  87. Wells TNC, Van Huijsduijnen RH, Van Voorhis WC. Malaria medicines: A glass half full? Nat Rev Drug Discov. 2015;14:424–42.

    CAS  PubMed  Google Scholar 

  88. Anthony MP, Burrows JN, Duparc S, Jmoehrle J, Wells TNC. The global pipeline of new medicines for the control and elimination of malaria. Malar J. 2012;11(316).

    PubMed  PubMed Central  Google Scholar 

  89. Paquet T, Le Manach C, Cabrera DG, Younis Y, Henrich PP, Abraham TS, et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med. 2017;9(387).

  90. Younis Y, Douelle F, Feng TS, Cabrera DG, Le Manach C, Nchinda AT, et al. 3,5-Diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential. J Med Chem. 2012;55(7):3479–87.

    CAS  PubMed  Google Scholar 

  91. Olliaro P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol Ther. 2001;89(2):207–19.

    CAS  PubMed  Google Scholar 

  92. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR. Epidemiology of drug-resistant malaria. Lancet Infect Dis. 2002;2:209–18.

    CAS  PubMed  Google Scholar 

  93. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin Resistance in Plasmodium falciparum Malaria. N Engl J Med. 2009.

  94. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of Artemisinin Resistance in Plasmodium falciparum Malaria. N Engl J Med. 2014;

  95. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: A cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15(4):415–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Aditya NP, Vathsala PG, Vieira V, RSR M, Souto EB. Advances in nanomedicines for malaria treatment. Adv Colloid Interface Sci. 2013;201–202:1–17.

    CAS  PubMed  Google Scholar 

  97. Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Delivery Rev. 2010;62:560–75.

    PubMed  Google Scholar 

  98. Singh KK. Nanomedicine in Malaria. In: Souto EB, editor. Patenting Nanomedicines: Legal Aspects, Intellectual Property and Grant Opportunities. Springer-Verlag Berlin Heidelberg; 2012. p. 401–34.

    Google Scholar 

  99. Kuntworbe N, Martini N, Shaw J, Al-Kassas R. Malaria intervention policies and pharmaceutical nanotechnology as a potential tool for malaria management. Drug Dev Res. 2012;73:167–84.

    CAS  Google Scholar 

  100. Huh AJ, Kwon YJ. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. Elsevier B.V. 2011;156:128–45.

    CAS  PubMed  Google Scholar 

  101. Venditto VJ, Szoka FC Jr. Cancer nanomedicines: So many papers and so few drugs! Adv Drug Deliv Rev. 2014;65(1):80–8.

    CAS  PubMed  Google Scholar 

  102. Assanhou AG, Li W, Zhang L, Xue L, Kong L, Sun H, et al. Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials. 2015;73:284–95.

    CAS  PubMed  Google Scholar 

  103. Islan GA, Durán M, Cacicedo ML, Nakazato G, Kobayashi RKT, Martinez DST, et al. Nanopharmaceuticals as a solution to neglected diseases: Is it possible? Acta Trop. Elsevier B.V. 2017;170:16–42.

    CAS  PubMed  Google Scholar 

  104. Dube A, Lemmer Y, Hayeshi R, Balogun M, Labuschagne P, Swai H, et al. State of the art and future directions in nanomedicine for tuberculosis. Expert Opin Drug Deliv. 2013;10(12):1725–34.

    CAS  PubMed  Google Scholar 

  105. Dube A, Ebrahim N. The nanomedicine landscape of South Africa. Nanotechnol Rev. 2017;6(4):339–4.

    Google Scholar 

  106. Kuentz M. Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discov Today Technol. 2012;9(2):e97–104.

    CAS  Google Scholar 

  107. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29:278–87.

    CAS  PubMed  Google Scholar 

  108. Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs. 2009;69(0012–6667 (Print)):361–92.

    CAS  PubMed  Google Scholar 

  109. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Vol. 10, International Journal of Nanomedicine. 2015. p. 975–99.

  110. Jiang L, Li L, He X, Yi Q, He B, Cao J, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials. 2015;52(1):126–39.

    CAS  PubMed  Google Scholar 

  111. Yu Y, Wang ZH, Zhang L, Yao HJ, Zhang Y, Li RJ, et al. Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials. 2012;33(6):1808–20.

    CAS  PubMed  Google Scholar 

  112. Zhou J, Zhao WY, Ma X, Ju RJ, Li XY, Li N, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials. 2013;34(14):3626–38.

    CAS  PubMed  Google Scholar 

  113. Srivastava A, Yadav T, Sharma S, Nayak A, Akanksha Kumari A, Mishra N. Polymers in Drug Delivery. J Biosci Med. 2016;04(01):69–84.

    CAS  Google Scholar 

  114. Marques J, Valle-Delgado JJ, Urbán P, Baró E, Prohens R, Mayor A, Cisteró P, Delves M, Sinden RE, Grandfils C, de Paz JL, García-Salcedo JA, Fernàndez-Busquets X. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 2017;3(2):515-525

    CAS  Google Scholar 

  115. Thakkar M, Brijesh S. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res. 2016;6:414–25.

  116. Movellan J, Urbán P, Moles E, de la Fuente JM, Sierra T, Serrano JL, et al. Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials. 2014;35(27):7940–50.

    CAS  PubMed  Google Scholar 

  117. Omwoyo WN, Ogutu B, Oloo F, Swai H, Kalombo L, Melariri P, et al. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomedicine. 2014;9(1):3865–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Muga JO, Gathirwa JW, Tukulula M, Jura WGZO. In vitro evaluation of chloroquine - loaded and heparin surface - functionalized solid lipid nanoparticles. Malar J. 2018:1–7.

  119. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Advanced Pharmaceutical Bulletin. 2015.

  120. Dwivedi P, Khatik R, Khandelwal K, Taneja I, Raju KSR. Wahajuddin, et al. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: An improved oral bioavailability in rats. Int J Pharm. 2014;466(1–2):321–7.

    CAS  PubMed  Google Scholar 

  121. Steyn JD, Wiesner L, Du Plessis LH, Grobler AF, Smith PJ, Chan WC, et al. Absorption of the novel artemisinin derivatives artemisone and artemiside: Potential application of PheroidTM technology. Int J Pharm. 2011.

  122. Du Plessis LH, Govender K, Denti P, Wiesner L. In vivo efficacy and bioavailability of lumefantrine: Evaluating the application of Pheroid technology. Eur J Pharm Biopharm. 2015;97:68–77.

    CAS  PubMed  Google Scholar 

  123. Du Plessis LH, Helena C, Van Huysteen E, Wiesner L, Kotzé AF. Formulation and evaluation of Pheroid vesicles containing mefloquine for the treatment of malaria. J Pharm Pharmacol. 2014;66(1):14–22.

    PubMed  Google Scholar 

  124. Prabhu P, Suryavanshi S, Pathak S, Sharma S, Patravale V. Artemether–lumefantrine nanostructured lipid carriers for oral malaria therapy: Enhanced efficacy at reduced dose and dosing frequency. Int J Pharm. 2016;511(1):473–87.

  125. Prabhu P, Suryavanshi S, Pathak S, Patra A, Sharma S, Patravale V. Nanostructured lipid carriers of artemether–lumefantrine combination for intravenous therapy of cerebral malaria. Int J Pharm. 2016;513(1–2):504–17.

    CAS  PubMed  Google Scholar 

  126. Parashar D, Aditya NP, Murthy RSR. Development of artemether and lumefantrine co-loaded nanostructured lipid carriers: Physicochemical characterization and in vivo antimalarial activity. Drug Deliv. 2016;23(1):123–9.

    PubMed  Google Scholar 

  127. Carbone C, Leonardi A, Cupri S, Puglisi G, Pignatello R. Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm Pat Anal. 2014 Mar;3(2):199–215.

    CAS  PubMed  Google Scholar 

  128. Fang C-L, A. Al-Suwayeh S, Fang J-Y. Nanostructured Lipid Carriers (NLCs) for Drug Delivery and Targeting. Recent Pat Nanotechnol. 2012;7(1):41–55.

    Google Scholar 

  129. Melariri P, Kalombo L, Nkuna P, Dube A, Hayeshi R, Ogutu B, et al. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice. Int J Nanomedicine. 2015;10:1493–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp. 1975;51(1):135–53.

    CAS  Google Scholar 

  131. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discovery. 2003;2:347–60.

    CAS  PubMed  Google Scholar 

  132. Vicent MJ, Duncan R. Polymer conjugates: Nanosized medicines for treating cancer. Trends in Biotechnol. 2006;24:39–47.

    CAS  PubMed  Google Scholar 

  133. Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7(3):2078–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhong YJ, Shao LH, Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int J Oncol. 2013. 42:373–383

    PubMed  PubMed Central  Google Scholar 

  135. Duncan R, Kopečková-Rejmanová P, Strohalm J, Hume I, Cable HC, Pohl J, et al. Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. evaluation of daunomycin and puromycin conjugates in vitro. Br J Cancer. 1987;55(2):165–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Huang Y. Preclinical and Clinical Advances of GalNAc-Decorated Nucleic Acid Therapeutics. Mol Ther Nucleic Acids. 2017;6:116–32.

    CAS  PubMed  Google Scholar 

  137. Zhang P, Lock LL, Cheetham AG, Cui H. Enhanced cellular entry and efficacy of tat conjugates by rational design of the auxiliary segment. Mol Pharm. 2014;11(3):964–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kawakami S, Hashida M. Glycosylation-mediated targeting of carriers. J Control Release. 2014;190:542–55.

    CAS  PubMed  Google Scholar 

  139. Ross PL, Wolfe J. Antibody-Drug Conjugates: An Overview of the CMC and Characterization Process. Antibody-Drug Conjug. 2016:59–83.

  140. PA MC, Olwill SA, WMY M, Buick RJ, Walker B, Scott CJ. Antibody conjugates and therapeutic strategies. Mol Interv. 2005;5(6):368–80.

    Google Scholar 

  141. Seymour LW, Ulbrich K, Wedge SR, Hume IC, Strohalm J, Duncan R. N-(2-hydroxypropyi)methacrylamide copolymers targeted to the hepatocyte galactose-receptor: Pharmacokinetics in DBA2mice. Br J Cancer. 1991;63(6):859–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Nan A, Croft SL, Yardley V, Ghandehari H. Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis. J Control Release. 2004;94(1):115–27.

    CAS  PubMed  Google Scholar 

  143. Nan A, Nanayakkara NPD, Walker LA, Yardley V, Croft SL, Ghandehari H. N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers for targeted delivery of 8-aminoquinoline antileishmanial drugs. J Control Release. 2001;77(3):233–43.

    CAS  PubMed  Google Scholar 

  144. Eldar-Boock A, Miller K, Sanchis J, Lupu R, Vicent MJ, Satchi-Fainaro R. Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials. 2011;32(15):3862–74.

    CAS  PubMed  Google Scholar 

  145. Duncan R, Seymour LCW, Scarlett L, Lloyd JB, Rejmanová P, Kopeček J. Fate of N-(2-hydroxypropyl)methacrylamide copolymers with pendent galactosamine residues after intravenous administration to rats. BBA - Gen Subj. 1986;880(1):62–71.

    CAS  Google Scholar 

  146. Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: Phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20(6):1668–76.

    CAS  PubMed  Google Scholar 

  147. Nicoletti S, Seifert K, Gilbert IH. N-(2-hydroxypropyl)methacrylamide-amphotericin B (HPMA-AmB) copolymer conjugates as antileishmanial agents. Int J Antimicrob Agents. 2009;33(5):441–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Duncan R, Vicent MJ. Polymer therapeutics-prospects for 21st century: The end of the beginning. Adv Drug Delivery Rev. 2013;65:60–70.

    CAS  PubMed  Google Scholar 

  149. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cnacer chemotherapy: mechanism of tumoritropic accumulatio of proteins and the antitumor agents Smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

    CAS  PubMed  Google Scholar 

  150. Seymour LW, Ferry DR, Kerr DJ, Rea D, Whitlock M, Poyner R, et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol. 2009;34(6):1629–36.

    CAS  PubMed  Google Scholar 

  151. Duncan R, Vicent MJ. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev. 2010;62(2):272–82.

    CAS  PubMed  Google Scholar 

  152. Chourpa I, Millot JM, Sockalingum GD, Riou JF, Manfait M. Kinetics of lactone hydrolysis in antitumor drugs of camptothecin series as studied by fluorescence spectroscopy. BiochimBiophys Acta - Gen Subj. 1998;1379(3):353–66.

    CAS  Google Scholar 

  153. Mathijssen R, Loos W, Verweij J, Sparreboom A. Pharmacology of Topoisomerase I Inhibitors Irinotecan (CPT-11) and Topotecan. Curr Cancer Drug Targets. 2002;2(2):103–23.

    CAS  PubMed  Google Scholar 

  154. Chazin E de L, Reis R da R, Junior WTV, Moor LFE, Vasconcelos TRA. An overview on the development of new potentially active camptothecin analogs against cancer. Mini Rev Med Chem. 2014;14(12):953–62.

    Google Scholar 

  155. Reginald B, Ewesuedo MJR, Topoisomerase I. Inhibitors. Oncologist. 1997;2(6):359–64.

    Google Scholar 

  156. Burris HA, Rothenberg ML, Kuhn JG, Von Hoff DD. Clinical trials with the topoisomerase I inhibitors. Semin Oncol. 1992;19(6):663–669.

  157. Cheng J, Khin KT, Davis ME. Antitumor Activity of -Cyclodextrin Polymer - Camptothecin Conjugates. Mol Pharm. 2004;1(3):213–23.

    Google Scholar 

  158. Schluep T, Hwang J, Cheng J, Heidel JD, Bartlett DW, Hollister B, et al. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res. 2006;12(5):1606–14.

    CAS  PubMed  Google Scholar 

  159. Singer JW, Bhatt R, Tulinsky J, Buhler KR, Heasley E, Klein P, et al. Water-soluble poly-(L-glutamic acid)-Gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Release. 2001:243–7.

    CAS  PubMed  Google Scholar 

  160. Chipman SD, Oldham FB, Pezzoni G, Singer JW. Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. Int J Nanomedicine. 2006;1:375–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    CAS  PubMed  Google Scholar 

  162. Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: An overview. Asian Journal of Pharmaceutical Sciences. Elsevier B.V. 2016;11:337–48.

    Google Scholar 

  163. Kopeček J. Polymer-drug conjugates: Origins, progress to date and future directions. Adv Drug Delivery Rev. 2013;65:49–59.

    PubMed  Google Scholar 

  164. Camacho KM, Kumar S, Menegatti S, Vogus DR, Anselmo AC, Mitragotri S. Synergistic antitumor activity of camptothecin-doxorubicin combinations and their conjugates with hyaluronic acid. J Control Release [Internet]. 2015;210:198–207. Available from:. https://doi.org/10.1016/j.jconrel.2015.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Markovsky E, Baabur-Cohen H, Satchi-Fainaro R. Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. J Control Release. 2014;187:145–57.

    CAS  PubMed  Google Scholar 

  166. Noh I, Kim HO, Choi J, Choi Y, Lee DK, Huh YM, et al. Co-delivery of paclitaxel and gemcitabine via CD44-targeting nanocarriers as a prodrug with synergistic antitumor activity against human biliary cancer. Biomaterials. 2015;53:763–74.

    CAS  PubMed  Google Scholar 

  167. Pang X, Du HL, Zhang HQ, Zhai YJ, Zhai GX. Polymer-drug conjugates: Present state of play and future perspectives. Drug Discov Today. 2013;18:1316–22.

    CAS  PubMed  Google Scholar 

  168. Greco F, Vicent MJ. Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Delivery Rev. 2009.

  169. Canal F, Sanchis J, Vicent MJ. Polymer-drug conjugates as nano-sized medicines. Curr Opin Biotechnol. 2011;22:894–900.

    CAS  PubMed  Google Scholar 

  170. Duncan R. Polymer therapeutics as nanomedicines: New perspectives. Curr Opin Biotechnol. Elsevier Ltd. 2011;22:492–501.

    CAS  PubMed  Google Scholar 

  171. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Delivery Rev. 2013;65:71–9.

    CAS  PubMed  Google Scholar 

  172. Maeda H. Polymer therapeutics and the EPR effect. J Drug Target. 2017;25(9–10):781–5.

    CAS  PubMed  Google Scholar 

  173. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1.

  174. Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: A new paradigm for drug targeting in infection. J Antimicrob Chemother. 2013;68(2):257–74.

    CAS  PubMed  Google Scholar 

  175. Durymanov M, Kamaletdinova T, Lehmann SE, Reineke J. Exploiting passive nanomedicine accumulation at sites of enhanced vascular permeability for non-cancerous applications. J Control Release. 2017.

  176. Biagini GA, Ward SA, Bray PG. Malaria parasite transporters as a drug-delivery strategy. Trends Parasitol. 2005;21(7):299–301.

    CAS  PubMed  Google Scholar 

  177. Goodyer ID, Pouvelle B, Schneider TG, Trelka DP, Taraschi TF. Characterization of macromolecular transport pathways in malaria-infected erythrocytes. Mol Biochem Parasitol. 1997;87(1):13–28.

    CAS  PubMed  Google Scholar 

  178. Pouvelle B, Spiegel R, Hsiao L, Howard RJ, Morris RL, Thomas AP, et al. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature. 1991;353(6339):73–5.

    CAS  PubMed  Google Scholar 

  179. Wan L, Zhang X, Gunaseelan S, Pooyan S, Debrah O, Leibowitz MJ, et al. Novel multi-component nanopharmaceuticals derived from poly(ethylene) glycol, retro-inverso-Tat nonapeptide and saquinavir demonstrate combined anti-HIV effects. AIDS Res Ther. 2006;3(1):1–15.

    Google Scholar 

  180. Vlieghe P, Clerc T, Pannecouque C, Witvrouw M, De Clercq E, Salles JP, et al. Synthesis of new covalently bound κ-carrageenan-AZT conjugates with improved anti-HIV activities. J Med Chem. 2002;45(6):1275–83.

    CAS  PubMed  Google Scholar 

  181. Senanayake TH, Gorantla S, Makarov E, Lu Y, Warren G, Vinogradov SV. Nanogel-Conjugated Reverse Transcriptase Inhibitors and Their Combinations as Novel Antiviral Agents with Increased Efficacy against HIV-1 Infection. Mol Pharm. 2015;12(12):4226–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wohl BM, Smith AAA, Jensen BEB, Zelikin AN. Macromolecular (pro)drugs with concurrent direct activity against the hepatitis C virus and inflammation. J Control Release. 2014;196:197–207.

    CAS  PubMed  Google Scholar 

  183. Danial M, Telwatte S, Tyssen D, Cosson S, Tachedjian G, Moad G, et al. Combination anti-HIV therapy via tandem release of prodrugs from macromolecular carriers. Polym Chem. 2016;7(48):7477–87.

    CAS  Google Scholar 

  184. Gunaseelan S, Debrah O, Wan L, Leibowitz MJ, Rabson AB, Stein S, et al. Synthesis of poly(ethylene glycol)-based saquinavir prodrug conjugates and assessment of release and anti-HIV-1 bioactivity using a novel protease inhibition assay. Bioconjug Chem. 2004;15(6):1322–33.

    CAS  PubMed  Google Scholar 

  185. Gao Y, Katsuraya K, Kaneko Y, Mimura T, Nakashima H, Uryu T. Synthesis of Azidothymidine-bound sulfated alkyl oligosaccharides and their inhibitory effects on AIDS virus infection in vitro. Polymer Journal. 1998:243–8.

    CAS  Google Scholar 

  186. Wannachaiyasit S, Chanvorachote P, Nimmannit U. A Novel Anti-HIV Dextrin–Zidovudine Conjugate Improving the Pharmacokinetics of Zidovudine in Rats. AAPS PharmSciTech [Internet]. 2008;9(3):840–50 Available from: http://www.springerlink.com/index/10.1208/s12249-008-9122-0.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Chimalakonda KC, Agarwal HK, Kumar A, Parang K, Mehvar R. Synthesis, analysis, in vitro characterization, and in vivo disposition of a lamivudine-dextran conjugate for selective antiviral delivery to the liver. Bioconjug Chem. 2007;18(6):2097–108.

    CAS  PubMed  Google Scholar 

  188. Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother. 2002;49(suppl 1):7–10.

    CAS  PubMed  Google Scholar 

  189. Adler-Moore J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother. 2002;49(suppl 1):21–30.

    CAS  PubMed  Google Scholar 

  190. Golenser J, Frankenburg S, Ehrenfreund T, Domb AJ. Efficacious treatment of experimental leishmaniasis with amphotericin B- arabinogalactan water-soluble derivatives. Antimicrob Agents Chemother. 1999;43(9):2209–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Sanchis J, Canal F, Lucas R. Polymer – drug conjugates for novel molecular targets. R eview. 2010;5(6):915–35.

    CAS  Google Scholar 

  192. Natfji AA, Osborn HMI, Greco F. Feasibility of polymer-drug conjugates for non-cancer applications. Curr OpinColloid Interface Sci. 2017.

  193. Stjärnkvist P, Artursson P, Brunmark A, Laakso T, Sjöholm I. Biodegradable microspheres. VIII. Killing of Leishmania donovani in cultured macrophages by microparticle-bound primaquine. Int J Pharm. 1987;40(3):215–22.

    Google Scholar 

  194. Rajić Z, Kos G, Zorc B, Singh PP, Singh S. Macromolecular prodrugs. XII. Primaquine conjugates: Synthesis and preliminary antimalarial evaluation. Acta Pharm. 2009;59(1):107–15.

    PubMed  Google Scholar 

  195. Borissova R, Stjärnkvist P, Sjöholm I, Karlsson MO. Biodegradable microspheres. 17. Lysosomal degradation of primaquine–peptide spacer arms. J Pharm Sci. 1995;84(2):256–62.

    CAS  PubMed  Google Scholar 

  196. Tomiya N, Jardim JG, Hou J, Pastrana-Mena R, Dinglasan RR, Lee YC. Liver-targeting of primaquine-(poly-γ-glutamic acid) and its degradation in rat hepatocytes. Bioorganic Med Chem. 2013;21(17):5275–81.

    CAS  Google Scholar 

  197. Joshi VM, Devarajan PV. Receptor-mediated hepatocyte-targeted delivery of primaquine phosphate nanocarboplex using a carbohydrate ligand. Drug Deliv Transl Res. 2014;4(4):353–64.

    CAS  PubMed  Google Scholar 

  198. Craparo EF, Sardo C, Serio R, Zizzo MG, Bondì ML, Giammona G, et al. Galactosylated polymeric carriers for liver targeting of sorafenib. Int J Pharm. 2014;466(1–2):172–80.

    CAS  PubMed  Google Scholar 

  199. Fiume L, Di Stefano G. Lactosaminated human albumin, a hepatotropic carrier of drugs. Eur J Pharm Sci. Elsevier B.V. 2010;40:253–62.

    CAS  PubMed  Google Scholar 

  200. Zimmermann TS, Karsten V, Chan A, Chiesa J, Boyce M, Bettencourt BR, et al. Clinical Proof of Concept for a Novel Hepatocyte-Targeting GalNAc-siRNA Conjugate. Mol Ther. 2017;25(1):71–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. D’Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting - Strategies and applications. J Control Release. 2015;203:126–39.

    PubMed  Google Scholar 

  202. Trouet A, Pirson P, Steiger R, Masquelier M, Baurain R, Gillet J. Development of new derivatives of primaquine by association with lysosomotropic carriers Development of new derivatives of primaquine by association with lysosomotropic carriers. Bull World Health Organ. 2014;59(May):449–58.

    Google Scholar 

  203. Hofsteenge J, Capuano A, Altszuler R, Moore S. Carrier-Linked Primaquine in the Chemotherapy of Malaria. J Med Chem. 1986.

  204. Elsadek B, Kratz F. Impact of albumin on drug delivery - New applications on the horizon. J Control Release. 2012;157:4–28.

    CAS  PubMed  Google Scholar 

  205. Kratz F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008.

  206. Ibrahim N, Ibrahim H, Sabater AM, Mazier D, Valentin A, Nepveu F. Artemisinin nanoformulation suitable for intravenous injection: Preparation, characterization and antimalarial activities. Int J Pharm. 2015;495(2):671–9.

    CAS  PubMed  Google Scholar 

  207. Duranton C, Tanneur V, Lang C, Brand VB, Koka S, Kasinathan RS, et al. A high specificity and affinity interaction with serum albumin stimulates an anion conductance in malaria-infected erythrocytes. Cell Physiol Biochem. 2008;22(5–6):395–404.

    CAS  PubMed  Google Scholar 

  208. Xiao D, Yang B, Yang XM, Yi D, Liao XL, Yang J, et al. Synthesis of water soluble chitosan-artemisinin conjugate. Asian J Chem. 2013;25(8):4637–9.

    CAS  Google Scholar 

  209. Dai L, Wang L, Deng L, Liu J, Lei J, Li D, et al. Novel multiarm polyethylene glycol-dihydroartemisinin conjugates enhancing therapeutic efficacy in non-small-cell lung cancer. Sci Rep. 2014;4:5871.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Liu Y, Qi Q, Li X, Liu J, Wang L, He J, et al. Self-Assembled Pectin-Conjugated Eight-Arm Polyethylene Glycol-Dihydroartemisinin Nanoparticles for Anticancer Combination Therapy. ACS Sustain Chem Eng. 2017;5(9):8097–107.

    CAS  Google Scholar 

  211. Nakase I, Lai H, Singh NP, Sasaki T. Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm. 2008;354:28–33.

    CAS  PubMed  Google Scholar 

  212. Kumar S, Singh RK, Murthy RSR, Bhardwaj TR. Synthesis and evaluation of substituted poly(Organophosphazenes) as a novel nanocarrier system for combined antimalarial therapy of primaquine and dihydroartemisinin. Pharm Res. 2015;32(8):2736–52.

    CAS  PubMed  Google Scholar 

  213. Kumar S, Singh RK, Sharma R, Murthy RSR, Bhardwaj TR. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin. Eur J Pharm Sci. 2015;66:123–37.

    CAS  PubMed  Google Scholar 

  214. Tripathy S, Kar S, Chattopadhyay S, Das S. A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop. 2013;128(3):494–503.

    CAS  PubMed  Google Scholar 

  215. Tripathy S, Chattopadhyay S, Dash SK, Ray Chowdhuri A, Das S, Sahu SK, et al. Chitosan conjugated chloroquine: Proficient to protect the induction of liver apoptosis during malaria. Int J Biol Macromol. 2015;74:585–600.

    CAS  PubMed  Google Scholar 

  216. Tripathy S, Das S, Chakraborty SP, Sahu SK, Pramanik P, Roy S. Synthesis, characterization of chitosan-tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: A dose and duration dependent approach. Int J Pharm. 2012;434(1–2):292–305.

    CAS  PubMed  Google Scholar 

  217. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8:2101–41.

    CAS  PubMed  Google Scholar 

  218. Urbán P, Valle-Delgado JJ, Mauro N, Marques J, Manfredi A, Rottmann M, et al. Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. J Control Release. 2014;177(1):84–95.

    PubMed  Google Scholar 

  219. Lemkine GF, Demeneix BA. Polyethylenimines for in vivo gene delivery. Curr Opin Mol Ther. 2001;3(2):178–82.

    CAS  PubMed  Google Scholar 

  220. Kang HC, Cho H, Bae YH. DNA polyplexes as combinatory drug carriers of doxorubicin and cisplatin: An in vitro study. Mol Pharm. 2015;12(8):2845–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release. 2012;161(2):446–60.

    CAS  PubMed  Google Scholar 

  222. Lee E, Lee J, Lee IH, Yu M, Kim H, Chae SY, et al. Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J Med Chem. 2008;51(20):6442–9.

    CAS  PubMed  Google Scholar 

  223. Lee E, Kim H, Lee IH, Jon S. In vivo antitumor effects of chitosan-conjugated docetaxel after oral administration. J Control Release. 2009;140(2):79–85.

    CAS  PubMed  Google Scholar 

  224. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5-28.

    CAS  PubMed  Google Scholar 

  225. Bugnicourt L, Ladavière C. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications. J Control Release. 2017;256:121–40.

    CAS  PubMed  Google Scholar 

  226. Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al. The role of animal models for research on severe malaria. PLoS Pathog. 2012;8(2).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Reader J, Botha M, Theron A, Lauterbach SB, Rossouw C, Engelbrecht D, et al. Nowhere to hide: Interrogating different metabolic parameters of Plasmodium falciparum gametocytes in a transmission blocking drug discovery pipeline towards malaria elimination. Malar J. 2015;14(1):1–17.

  228. Theron M, Cross N, Cawkill P, Bustamante LY, Rayner JC. An in vitro erythrocyte preference assay reveals that Plasmodium falciparum parasites prefer Type O over Type A erythrocytes. Sci Rep. 2018;8(1):1–9.

    CAS  Google Scholar 

  229. Ringwald P, Meche FS, Bickii J, Basco LK. In vitro culture and drug sensitivity assay of Plasmodium falciparum with nonserum substitute and acute-phase sera. J Clin Microbiol. 1999;37(3):700–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Ouédraogo AL, Guelbéogo WM, Cohuet A, Morlais I, King JG, Gonçalves BP, et al. A protocol for membrane feeding assays to determine the infectiousness of P. falciparum naturally infected individuals to Anopheles gambiae. Malar World J. 2013;4(16):17–20.

    Google Scholar 

  231. Jiménez-Díaz MB, Mulet T, Viera S, Gómez V, Garuti H, Ibáñez J, et al. Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL2Rγnullmice engrafted with human erythrocytes. Antimicrob Agents Chemother. 2009;53(10):4533–6.

    PubMed  PubMed Central  Google Scholar 

  232. Deye GA, Gettayacamin M, Hansukjariya P, Im-erbsin R, Sattabongkot J, Rothstein Y, et al. Use of a rhesus Plasmodium cynomolgi model to screen for anti-hypnozoite activity of pharmaceutical substances. Am J Trop Med Hyg. 2012;86(6):931–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Singh B, Sung LK, Matusop A, Radhakrishnan A, Shamsul SSG, Cox-Singh J, et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004;363(9414):1017–24.

    PubMed  Google Scholar 

  234. Galinski MR, Lapp SA, Peterson MS, Ay F, Joyner CJ, Le Roch KG, et al. Plasmodium knowlesi: A superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology. 2018;145(1):85–100.

    CAS  PubMed  Google Scholar 

  235. Ko CH, Li K, Li CL, Ng PC, Fung KP, James AE, et al. Development of a novel mouse model of severe glucose-6-phosphate dehydrogenase (G6PD)-deficiency for in vitro and in vivo assessment of hemolytic toxicity to red blood cells. Blood Cells, Mol Dis. 2011;47(3):176–81.

    CAS  Google Scholar 

  236. Rochford R, Ohrt C, Baresel PC, Campo B, Sampath A, Magill AJ, et al. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity. Proc Natl Acad Sci. 2013;110(43):17486–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

All authors listed on this manuscript have contributed to its writing and compilation. They have all consented to being included in the list of authors. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed O. Balogun.

Additional information

Guest Editor: Admire Dube

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mvango, S., Matshe, W.M.R., Balogun, A.O. et al. Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharm Res 35, 237 (2018). https://doi.org/10.1007/s11095-018-2517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2517-z

KEY WORDS

Navigation