Skip to main content

Advertisement

Log in

Co-Delivery of Doxorubicin and Survivin shRNA-Expressing Plasmid Via Microenvironment-Responsive Dendritic Mesoporous Silica Nanoparticles for Synergistic Cancer Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The present study is aimed at designing an appropriate co-delivery system for chemotherapeutic drugs and gene drugs with high loading capacity, on-demand release behaviors, efficient endosomal escape, and enhanced nucleic localization, thereby providing efficacious antitumor activity.

Methods

Schiff-base linked imidazole dendritic mesoporous silica nanoparticles (SL-IDMSN) were developed and employed to load doxorubicin (DOX) and survivin shRNA-expressing plasmid (iSur-pDNA) to form nanocomplexes. The nanoparticles were assessed by structural characterization, drug loading and release, cellular uptake, intracellular distribution, gene transfection, in vitro anti-proliferation of hepatoma cells, and in vivo tumor growth inhibition in H-22 tumor bearing mice.

Results

SL-IDMSN showed high loading capacity for both DOX and iSur-pDNA due to their hierarchical mesostructures. The cleavage of Schiff-base linkage on SL-IDMSN in the weakly acidic endosomes/lysosomes led to microenvironment-specific release of both DOX and iSur-pDNA. Meanwhile, the imidazole modification could trigger the efficient endosomal escape via proton sponge effect, thereby enhancing nuclear accumulation of iSur-pDNA and gene silencing efficiency. More importantly, these superior performances of SL-IDMSN resulted in their improved inhibitory effects on in vitro cancer cell proliferation and in vivo tumor growth.

Conclusions

SL-IDMSN is a microenvironment-sensitive and biocompatible nanocarrier for the co-delivery of DOX and iSur-pDNA, which might be a promising carrier for co-delivery of chemotherapeutic drugs and gene drugs for synergistic cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APTES:

(3-aminopropy) triethoxysilane

BET:

Brunauer-Emmett-Teller

CLSM:

Confocal laser scanning microscopy

CTAB:

Cetyltrimethylammonium bromide

DL:

Drug loading

DMEM:

Dulbecco’s modified eagle medium

DMSN:

Dendrimer mesoporous silica nanoparticles

DMSN@DOX:

DOX loaded DMSN nanoparticles

DMSN@DOX/pDNA:

iSur-pDNA loaded DMSN@DOX nanocomplexes

DOX:

Doxorubicin

FT-IR:

Fourier transform-infrared spectroscopy

FITC-pDNA:

FITC-labeled pDNA

IC50 :

Half maximal inhibitory concentration

iSur-pDNA:

Survivin shRNA-expressing plasmid

MTT:

Methyl thiazolyl tetrazolium

PBS:

Phosphate buffer solution

SAXS:

Small-angle X-ray scattering

SDS:

Sodium dodecyl sulfate

SL-IDMSN:

Schiff-base linked imidazole dendritic mesoporous silica nanoparticles

SL-IDMSN@DOX:

DOX loaded SL-IDMSN nanoparticles

SL-IDMSN@DOX/pDNA:

iSur-pDNA loaded SL-IDMSN@DOX nanocomplexes

TEA:

Triethanolamine

TEM:

Transmission electron microscopy

TEOS:

Tetraethyl orthosilicate

TIR:

Tumor inhibition ratio

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):359–86.

    Article  Google Scholar 

  2. He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials. 2011;32(30):7711–20.

    Article  CAS  Google Scholar 

  3. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC. Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc. 2015;137(6):2140–54.

    Article  CAS  Google Scholar 

  4. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1. Adv Drug Deliv Rev. 2001;46(1–3):3–26.

    Article  CAS  Google Scholar 

  5. Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release. 2014;190:352–70.

    Article  CAS  Google Scholar 

  6. Wang Y, Gao S, Ye W-H, Yoon HS, Yang Y-Y. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater. 2006;5(10):791–6.

    Article  CAS  Google Scholar 

  7. Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–13.

    Article  CAS  Google Scholar 

  8. Li C, Yang D. Ma pa, Chen Y, Wu Y, Hou Z, et al. multifunctional Upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small. 2013;9(24):4150–9.

    Article  CAS  Google Scholar 

  9. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    Article  CAS  Google Scholar 

  10. Du X, Shi B, Liang J, Bi J, Dai S, Qiao SZ. Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers. Adv Mater. 2013;25(41):5981–5.

    Article  CAS  Google Scholar 

  11. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88.

    Article  CAS  Google Scholar 

  12. Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev. 2012;41(9):3679–98.

    Article  CAS  Google Scholar 

  13. Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–34.

    Article  CAS  Google Scholar 

  14. Tian L, Bae YH. Cancer nanomedicines targeting tumor extracellular pH. Colloid Surface B. 2012;99:116–26.

    Article  CAS  Google Scholar 

  15. Yan L, Zhang J, Lee C-S, Chen X. Micro- and nanotechnologies for intracellular delivery. Small. 2014;10(22):4487–504.

    Article  CAS  Google Scholar 

  16. Tian HY, Chen J, Chen XS. Nanoparticles for gene delivery. Small. 2013;9(12):2034–44.

    Article  CAS  Google Scholar 

  17. Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev. 2013;65(1):121–38.

    Article  CAS  Google Scholar 

  18. Xin Y, Yuan J. Schiff's base as a stimuli-responsive linker in polymer chemistry. Polym Chem. 2012;3(11):3045–55.

    Article  CAS  Google Scholar 

  19. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed. 2003;42(38):4640–3.

    Article  CAS  Google Scholar 

  20. Shen D, Yang J, Li X, Zhou L, Zhang R, Li W, et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014;14(2):923–32.

    Article  CAS  Google Scholar 

  21. Slowing I, Trewyn BG, Lin VSY. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticleson the endocytosis by human cancer cells. J Am Chem Soc. 2006;128(46):14792–3.

    Article  CAS  Google Scholar 

  22. Legras A, Kondor A, Heitzmann MT, Truss RW. Inverse gas chromatography for natural fibre characterisation: identification of the critical parameters to determine the Brunauer-Emmett-teller specific surface area. J Chromatogr A. 2015;1425:273–9.

    Article  CAS  Google Scholar 

  23. Villarroel-Rocha J, Barrera D, Sapag K. Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Microporous Mesoporous Mat. 2014;200:68–78.

    Article  CAS  Google Scholar 

  24. Sun L, Deng XH, Yang X, Li ZJ, Wang ZH, Li L, et al. Co-delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Adv. 2014;4(87):46737–50.

    Article  CAS  Google Scholar 

  25. Shi B, Zhang H, Dai S, Du X, Bi J, Qiao SZ. Intracellular microenvironment responsive polymers: a multiple-stage transport platform for high-performance gene delivery. Small. 2014;10(5):871–7.

    Article  CAS  Google Scholar 

  26. Yu B, Tang C, Yin C. Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes. Biomaterials. 2014;35(24):6369–78.

    Article  CAS  Google Scholar 

  27. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  CAS  Google Scholar 

  28. Mesa MM, Macias M, Cantero D. A simplification of the protein assay method of Ramsay et al. for the quantification of Thiobacillus ferrooxidans in the presence of ferric precipitates. Appl Microbiol Biot. 2000;53(6):722–5.

    Article  CAS  Google Scholar 

  29. Zheng H, Tang C, Yin CH. The effect of crosslinking agents on the transfection efficiency, cellular and intracellular processing of DNA/polymer nanocomplexes. Biomaterials. 2013;34(13):3479–88.

    Article  CAS  Google Scholar 

  30. Douglas KL, Piccirillo CA, Tabrizian M. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur J Pharm Biopharm. 2008;68(3):676–87.

    Article  CAS  Google Scholar 

  31. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58(1):32–45.

    Article  CAS  Google Scholar 

  32. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J. 2004;377(1):159–69.

    Article  CAS  Google Scholar 

  33. Shi J, Guobao W, Chen H, Zhong W, Qiu X, Xing MMQ. Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment. Polym Chem. 2014;5(21):6180–9.

    Article  CAS  Google Scholar 

  34. Gao F, Botella P, Corma A, Blesa J, Dong L. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J Phys Chem B. 2009;113(6):1796–804.

    Article  CAS  Google Scholar 

  35. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–58.

    Article  CAS  Google Scholar 

  36. Mrkvan T, Sirova M, Etrych T, Chytil P, Strohalm J, Plocova D, et al. Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor immunity. J Control Release. 2005;110(1):119–29.

    Article  CAS  Google Scholar 

  37. Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv Mater. 2012;24(28):3803–22.

    Article  CAS  Google Scholar 

  38. Mishra S, Heidel JD, Webster P, Davis ME. Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J Control Release. 2006;116(2):179–91.

    Article  CAS  Google Scholar 

  39. Altieri DC. Targeting survivin in cancer. Cancer Lett. 2013;332(2):225–8.

    Article  CAS  Google Scholar 

  40. Habib R, Akhtar J, Taqi M, Yu C, Zhang C. Lentiviral vector-mediated survivin shRNA delivery in gastric cancer cell lines significantly inhibits cell proliferation and tumor growth. Oncol Rep. 2015;34(2):859–67.

    Article  CAS  Google Scholar 

  41. Shoeneman JK, Ehrhart EJ, Eickhoff JC, Charles JB, Powers BE, Thamm DH. Expression and function of survivin in canine osteosarcoma. Cancer Res. 2012;72(1):249–59.

    Article  CAS  Google Scholar 

  42. Sarela AI, Verbeke CS, Ramsdale J, Davies CL, Markham AF, Guillou PJ. Expression of survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma. Brit J Cancer. 2002;86(6):886–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors are thankful for the financial support from the National Natural Science Foundation of China (No. 81273460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Tang.

Electronic supplementary material

ESM 1

(DOCX 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, L., Tang, C. et al. Co-Delivery of Doxorubicin and Survivin shRNA-Expressing Plasmid Via Microenvironment-Responsive Dendritic Mesoporous Silica Nanoparticles for Synergistic Cancer Therapy. Pharm Res 34, 2829–2841 (2017). https://doi.org/10.1007/s11095-017-2264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2264-6

KEY WORDS

Navigation