Skip to main content

Advertisement

Log in

RLIP76 Inhibition: A Promising Developmental Therapy for Neuroblastoma

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Refractory and relapsed neuroblastoma (NB) present with significant challenges in clinical management. Though primary NBs largely with wild-type p53 respond well to interventions, dysfunctional signaling in the p53 pathways in a MYCN oncogene driven background is found in a number of children with NB. The p53-mutant NB is largely unresponsive to available therapies and p53-independent targeted therapeutics represents a vital need in pediatric oncology. We analyzed the findings on mercapturic acid pathway (MAP) transporter RLIP76, which has broad and critical effects on multiple pathways as essential for carcinogenesis, oxidative stress and drug-resistance, is over-expressed in NB. RLIP76 inhibition by antibodies or depletion by antisense causes apoptosis and sensitization to chemo-radiotherapy in many cancers. In addition, recent studies indicate that the interactions between p53, MYCN, and WNT regulate apoptosis resistance and protein ubiquitination. RLIP76 and p53 interact with each other and colocalize in NB cells. Targeted depletion/inhibition of RLIP76 causes apoptosis and tumor regression in NB irrespective of p53 status. In the present review, we discuss the mechanisms and the role of RLIP76 in oxidative stress, drug-resistance and clathrin-dependent endocytosis (CDE), and analyze the molecular basis for the role of RLIP76 targeted approaches in the context principal drivers of NB pathogenesis, progression and drug-resistance. The evidence from RLIP76 studies in other cancers, when taken in the context of our recent RLIP76 focused mechanistic studies in NB, provides strong basis for further characterization and development of RLIP76 targeted therapies for NB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

4HNE:

4-hydroxy nonenal

cdc2:

Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog

CDE:

Clathrin-dependent endocytosis

COSMIC:

Catalogue of somatic mutations in cancer

EGFR:

Epidermal growth factor receptor

GS-E:

Glutathione electrophile conjugates

GSH:

Glutathione

GST:

Glutathione S-transferase

Hsf1:

Heat shock transcription factor 1

IGFR:

Insulin growth factor receptor

LPO:

Lipid peroxidation

MAP:

Mercapturic acid pathway

MEFs:

Mouse embryonic fibroblasts

NB:

Neuroblastoma

PI3K:

Phosphatidylinositol 3-kinase

POB1:

Partner of RalBP1 or RLIP76

PUMA:

p53 upregulated mediator of apoptosis

RLIP76 (RALBP1):

A 76 kDa Ral-interacting protein

RLIP76−/− :

RLIP76 knockout homozygous mice

USP7:

Ubiquitin specific protease 7

References

  1. Wright JH. Neurocytoma or neuroblastoma: a kind of tumor not generally recognized. J Exp Med. 1910;12:556–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Berthold F, Hero B. Neuroblastoma: current drug therapy recommendations as part of the total treatment approach. Drugs. 2000;6:1261–77.

    Google Scholar 

  3. Morgenstern DA, London WB, Stephens D, Volchenboum SL, Simon T, Nakagawara A, et al. Prognostic significance of pattern and burden of metastatic disease in patients with stage 4 neuroblastoma: a study from the international neuroblastoma risk group database. Eur J Cancer. 2016;65:1–10.

    PubMed  Google Scholar 

  4. DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;3:181–9.

    Google Scholar 

  5. Smith SJ, Diehl N, Leavitt JA, Mohney BG. Incidence of pediatric Horner syndrome and the risk of neuroblastoma: a population-based study. Arch Ophthalmol. 2010;3:324–9.

    Google Scholar 

  6. Kumar HR, Sandoval JA, Lovell MA, Fenton LZ, Bealer JF. Primary pancreatic neuroblastoma: an unusual tumor in infancy. J Pediatr Surg. 2010;3:642–6.

    Google Scholar 

  7. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–4.

    CAS  PubMed  Google Scholar 

  8. Keshelava N, Zuo JJ, Waidyaratne NS, Triche TJ, Reynolds CP. P53 mutations and loss of p53 function confer multidrug resistance in neuroblastoma. Med Pediatr Oncol. 2000;6:563–8.

    Google Scholar 

  9. Gamble LD, Kees UR, Tweddle DA, Lunec J. MYCN sensitizes neuroblastoma to the MDM2-p53 antagonists Nutlin-3 and MI-63. Oncogene. 2012;31:752–63.

    CAS  PubMed  Google Scholar 

  10. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. 2013;3:a014415.

    PubMed  PubMed Central  Google Scholar 

  11. Liu X, Mazanek P, Dam V, Wang Q, Zhao H, Guo R, et al. Deregulated Wnt/beta-catenin program in high-risk neuroblastomas without MYCN amplification. Oncogene. 2008;27:1478–88.

    CAS  PubMed  Google Scholar 

  12. Blitzer JT, Nusse R. A critical role for endocytosis in Wnt signaling. BMC Cell Biol. 2006;7:28.

    PubMed  PubMed Central  Google Scholar 

  13. Amaral JD, Xavier JM, Steer CJ, Rodrigues CM. The role of p53 in apoptosis. Discov Med. 2010;45:145–52.

    Google Scholar 

  14. Garaventa A, Luksch R, Lo Piccolo MS, Cavadini E, Montaldo PG, Pizzitola MR, et al. Phase I trial and pharmacokinetics of fenretinide in children with neuroblastoma. Clin Cancer Res. 2003;9:2032–9.

    CAS  PubMed  Google Scholar 

  15. Ploessl C, Pan A, Maples KT, Lowe DK. Dinutuximab: an anti-GD2 monoclonal antibody for high-risk neuroblastoma. Ann Pharmacother. 2016;50:416–22.

    CAS  PubMed  Google Scholar 

  16. Kubota M, Okuyama N, Hirayama Y, Asami K, Ogawa A, Watanabe A. Mortality and morbidity of patients with neuroblastoma who survived for more than 10 years after treatment--Niigata tumor board study. J Pediatr Surg. 2010;4:673–7.

    Google Scholar 

  17. Awasthi S, Cheng J, Singhal SS, Saini MK, Pandya U, Pikula S, et al. Novel function of human RLIP76: ATP-dependent transport of glutathione-conjugates and doxorubicin. Biochemistry. 2000;39:9327–34.

    CAS  PubMed  Google Scholar 

  18. Singhal SS, Wickramarachchi D, Yadav S, Singhal J, Leake K, Vatsyayan R, et al. Glutathione-conjugate transport by RLIP76 is required for clathrin-dependent endocytosis and chemical carcinogenesis. Mol Cancer Therap. 2011;10:16–28.

    CAS  Google Scholar 

  19. Singhal J, Yadav S, Nagaprashantha LD, Vatsyayan R, Singhal SS, Awasthi S. Targeting p53-null neuroblastomas through RLIP76. Cancer Prev Res. 2011;4:879–89.

    CAS  Google Scholar 

  20. Singhal SS, Awasthi YC, Awasthi S. Regression of melanoma in a murine model by RLIP76 depletion. Cancer Res. 2006;66:2354–60.

    CAS  PubMed  Google Scholar 

  21. Singhal SS, Singhal J, Yadav S, Dwivedi S, Boor P, Awasthi YC, et al. Regression of lung and colon cancer xenografts by depleting or inhibiting RLIP76 (RALBP1). Cancer Res. 2007;67:4382–9.

    CAS  PubMed  Google Scholar 

  22. Singhal SS, Yadav S, Singhal J, Sahu M, Awasthi YC, Awasthi S. RLIP76: a target for kidney cancer therapy. Cancer Res. 2009;69:4244–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Singhal SS, Roth C, Leake K, Singhal J, Yadav S, Awasthi S. Regression of prostate cancer xenografts by RLIP76 depletion. Biochem Pharmacol. 2009;77:1074–83.

    CAS  PubMed  Google Scholar 

  24. Singhal SS, Sehrawat A, Sahu M, Singhal P, Vatsyayan R, Lelsani P, et al. RLIP76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. Int J Cancer. 2010;126:1327–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Awasthi S, Singhal SS, Yadav S, Singhal J, Drake K, Nadkar A, et al. RALBP1 is a major determinant of radiation sensitivity. Cancer Res. 2005;65:6022–8.

    CAS  PubMed  Google Scholar 

  26. Singhal J, Singhal SS, Yadav S, Warnke M, Yacoub A, Dent P, et al. RLIP76 in defense of radiation poisoning. Int J Radiat Oncol Biol Phys. 2008;72:553–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Singhal SS, Yadav S, Singhal J, Sahu M, Sehrawat A, Awasthi S. Diminished drug transport and augmented radiation sensitivity caused by loss of RLIP76. FEBS Lett. 2008;582:3408–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mousavi SA, Malerød L, Berg T, Kjeken R. Clathrin-dependent endocytosis. Biochem J. 2004;377:1–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lodish MB. Kinase inhibitors: adverse effects related to the endocrine system. J Clin Endocrinol Metab. 2013;98:1333–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Awasthi S, Singhal SS, Yadav S, Singhal J, Vatsyayan R, Zajac E, et al. A central role of RLIP76 in regulation of glycemic control. Diabetes. 2010;59:714–25.

    CAS  PubMed  Google Scholar 

  31. Modak S, Cheung NK. Neuroblastoma: therapeutic strategies for a clinical enigma cancer treat. Rev. 2010;36:307–17.

    CAS  Google Scholar 

  32. Donehower LA, Harvey M, Slagle B, McArthur M, Montgomery C, Butel JS, et al. p53 deficient mice are developmentally normal but susceptible to tumors. Nature. 1992;356:215–21.

    CAS  PubMed  Google Scholar 

  33. Donehower LA, Lozano G. Twenty years studying p53 functions in genetically engineered mice. Nat Rev Cancer. 2009;9:831–41.

    CAS  PubMed  Google Scholar 

  34. Martinez-Delgado B, Robledo M, Arranz E, Infantes F, Echezarreta G, Marcos B, et al. Correlation between mutations in p53 gene and protein expression in human lymphomas. Am J Hematol. 1997;1:1–8.

    Google Scholar 

  35. Xue C, Haber M, Flemming C, Marshall GM, Lock RB, MacKenzie KL, et al. P53 determines multidrug sensitivity of childhood neuroblastoma. Cancer Res. 2007;67:10351–60.

    CAS  PubMed  Google Scholar 

  36. Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in mdm 2 deficient mice by absence of p53. Nature. 1995;378:206–9.

    CAS  PubMed  Google Scholar 

  37. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128.

    CAS  PubMed  Google Scholar 

  38. Yadav S, Zajac E, Singhal SS, Singhal J, Drake K, Awasthi YC, et al. POB1 over-expression inhibits RLIP76 mediated transport of glutathione-conjugates, drugs and promotes apoptosis. Biochem Biophys Res Commun. 2005;328:1003–9.

    CAS  PubMed  Google Scholar 

  39. Singhal SS, Yadav S, Drake K, Singhal J, Awasthi S. Hsf-1 and POB1 induce drug-sensitivity and apoptosis by inhibiting Ralbp1. J Biol Chem. 2008;283:19714–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Singhal SS, Yadav S, Vatsyayan R, Chaudhary P, Borvak J, Singhal J, et al. Increased expression of Cdc2 inhibits transport function of RLIP76 and promotes apoptosis. Cancer Lett. 2009;283:152–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chesler L, Goldenberg DD, Collins R, Grimmer M, Kim GE, Tihan T, et al. Chemotherapy-induced apoptosis in a transgenic model of neuroblastoma proceeds through p53 induction. Neoplasia. 2008;10:1268–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi Y, Nikulenkov F, Zawacka-Pankau J, Li H, Gabdoulline R, Xu J, et al. ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ. 2014;21:612–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaudhary P, Sharma R, Sharma A, Vatsyayan R, Yadav S, Singhal SS, et al. Mechanisms of 4-Hydroxy-2-nonenal induced pro- and anti-apoptotic signaling. Biochemistry. 2010;49:6263–75.

    CAS  PubMed  Google Scholar 

  44. Li Q, Feldman RA, Radhakrishnan VM, Carey S, Martinez JD. Hsf1 is required for the nuclear translocation of p53 tumor suppressor. Neoplasia. 2008;10:1138–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu Y, Mivechi NF. HSF-1 interacts with Ral-binding protein 1 in a stress-responsive, multi-protein complex with HSP90 in-vivo. J Biol Chem. 2003;278:17299–306.

    CAS  PubMed  Google Scholar 

  46. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30:445–600.

    CAS  PubMed  Google Scholar 

  47. Awasthi YC, Yang Y, Tiwari NK, Patrick B, Sharma A, Li J, et al. Regulation of 4-hydroxynonenal-mediated signaling by glutathione S-transferases. Free Radic Biol Med. 2004;37:607–19.

    CAS  PubMed  Google Scholar 

  48. Awasthi YC, Sharma R, Sharma A, Yadav S, Singhal SS, Chaudhary P, et al. Self-regulatory role of 4HNE in signaling for stress-induced programmed cell death. Free Radic Biol Med. 2008;45:111–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng C, Shen R, Li K, Zheng N, Zong Y, Ye D, et al. Epidermal growth factor receptor is overexpressed in neuroblastoma tissues and cells. Acta Biochim Biophys Sin Shanghai. 2016;48:762–7.

    CAS  PubMed  Google Scholar 

  50. Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol. 2009;10:609–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Roy CL, Wrana JL. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol. 2005;6:112–26.

    PubMed  Google Scholar 

  52. Brankatschk B, Wichert S, Johnson SD, Schaad O, Rossner MJ, Gruenberg J. Regulation of the EGF transcriptional response by endocytic sorting. Sci Signal. 2012;5:ra21.

    PubMed  Google Scholar 

  53. Zhao Q, Tran H, Dimitrov DS, Cheung NK. A dual-specific anti-IGF-1/IGF-2 human monoclonal antibody alone and in combination with temsirolimus for therapy of neuroblastoma. Int J Cancer. 2015;137:2243–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Backer JM, Shoelson SE, Haring E, White MF. Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region. J Cell Biol. 1991;115:1535–45.

    CAS  PubMed  Google Scholar 

  55. Russo VC, Kobayashi K, Najdovska S, Baker NL, Werther GA. Neuronal protection from glucose deprivation via modulation of glucose transport and inhibition of apoptosis: a role for the insulin-like growth factor system. Brain Res. 2004;1009:40–53.

    CAS  PubMed  Google Scholar 

  56. Gil-Ad I, Shtaif B, Luria D, Karp L, Fridman Y, Weizman A. Insulin-like-growth-factor-I (IGF-I) antagonizes apoptosis induced by serum deficiency and doxorubicin in neuronal cell culture. Growth Hormon IGF Res. 1999;9:458–64.

    CAS  Google Scholar 

  57. MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gagliardi M, Hernandez A, McGough IJ, Vincent JP. Inhibitors of endocytosis prevent Wnt/wingless signalling by reducing the level of basal βcatenin/armadillo. J Cell Sci. 2014;127:4918–26.

    PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Zhou B, Liu Y, Chen K, Bao P, Wang Y, et al. Wnt inhibitory factor-1 functions as a tumor suppressor through modulating Wnt/b-catenin signaling in neuroblastoma. Cancer Lett. 2014;348:12–9.

    CAS  PubMed  Google Scholar 

  60. Watson IR, Irwin MS. Ubiquitin and ubiquitin-like modifications of the p53 family. Neoplasia. 2006;8:655–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Carrano AC, Liu Z, Dillin A, Hunter T. A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature. 2009;460:396–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brooks CL, Gu W. p53 regulation by ubiquitin. FEBS Lett. 2011;585:2803–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.

    CAS  PubMed  Google Scholar 

  64. Jain AK, Barton MC. Making sense of ubiquitin ligases that regulate p53. Cancer Biol Ther. 2010;10:665–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bonvini P, Nguyen P, Trepel J, Neckers LM. In vivo degradation of N-myc in neuroblastoma cells is mediated by the 26S proteasome. Oncogene. 1998;16:1131–9.

    CAS  PubMed  Google Scholar 

  66. Tavana O, Li D, Dai C, Lopez G, Banerjee D, Kon N, et al. NHAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med. 2016;22:1180–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cotto-Rios XM, Békés M, Chapman J, Ueberheide B, Huang TT. Deubiquitinases as a signaling target of oxidative stress. Cell Rep. 2012;2:1475–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Awasthi S, Singhal SS, Awasthi YC, Martin B, Woo JH, Cunningham CC, et al. RLIP76 and cancer. Clin Cancer Res. 2008;14:4372–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jullien-Flores V, Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R, et al. Bridging Ral GTPase to rho pathways. RLIP, a Ral effector with CDC42/Rac GTPase-activating protein activity. J Biol Chem. 1995;270:22473–7.

    CAS  PubMed  Google Scholar 

  70. Park SH, Weinberg RA. A putative effector of Ral has homology to rho/Rac GTPase-activating proteins. Oncogene. 1995;11:2349–55.

    CAS  PubMed  Google Scholar 

  71. Cantor SB, Urano T, Feig LA. Identification and characterization of Ral-binding-protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol. 1995;15:4578–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jullien-Flores V, Mahe Y, Mirey G, Leprince C, Meunier-Bisceuil B, Sorkin A, et al. RLIP76, an effector of the GTPase Ral, interacts with the AP2 complex: involvement of the Ral pathway in receptor endocytosis. J Cell Sci. 2000;113:2837–44.

    CAS  PubMed  Google Scholar 

  73. Rosse C, L'Hoste S, Offner N, Picard A, Camonis JH. RLIP, an effector of the Ral-GTPases, is a platform for Cdk1 to phosphorylate epsin during the switch off of endocytosis in mitosis. J Biol Chem. 2003;278:30597–604.

    CAS  PubMed  Google Scholar 

  74. Awasthi S, Singhal SS, Sharma R, Zimniak P, Awasthi YC. Transport of glutathione-conjugates and chemotherapeutic drugs by RLIP76: a novel link between G-protein and tyrosine-kinase signaling and drug-resistance. Int J Cancer. 2003;106:635–46.

    CAS  PubMed  Google Scholar 

  75. Singhal SS, Yadav S, Roth C, Singhal J. RLIP76: a novel glutathione-conjugate and multi-drug transporter. Biochem Pharmacol. 2009;77:761–9.

    CAS  PubMed  Google Scholar 

  76. Vatsyayan R, Lelsani P, Awasthi S, Singhal SS. RLIP76: a versatile transporter and an emerging target for cancer therapy. Biochem Pharmacol. 2010;79:1699–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Awasthi S, Singhal SS, Srivastava SK, Zimniak P, Bajpai KK, Saxena M, et al. Adenosine triphosphate-dependent transport of doxorubicin, daunomyicn, and vinblastine in human tissues by a mechanism distinct from the P-glycoprotein. J Clin Invest. 1994;93:958–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Singhal SS, Sehrawat A, Metha A, Sahu M, Awasthi S. Functional reconstitution of RLIP76 catalyzing ATP-dependent transport of glutathione-conjugate. Int J Oncol. 2009;34:191–9.

    CAS  PubMed  Google Scholar 

  79. Leake K, Singhal J, Nagaprashantha LD, Awasthi S, Singhal SS. RLIP76 regulates PI3K/Akt signaling and chemo-radio-therapy resistance in pancreatic cancer. PLoS One. 2012;7:e34582.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Singhal SS, Singhal J, Nair MP, Lacko AG, Awasthi YC, Awasthi S. Doxorubicin transport by RALBP1 and ABCG2 in lung and breast cancer. Int J Oncol. 2007;30:717–25.

    CAS  PubMed  Google Scholar 

  81. Goldfinger LE, Lee S. Emerging treatments in lung cancer - targeting the RLIP76 molecular transporter. Lung Cancer. 2013;4:61–9.

    PubMed Central  Google Scholar 

  82. Goldfinger LE, Ptak C, Jeffery ED, Shabanowitz J, Hunt DF, Ginsberg MH. RLIP76 (RALBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration. J Cell Biol. 2006;174:877–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Herlevsen MC, Theodorescu D. Mass spectroscopic phosphoprotein mapping of Ral binding protein 1 (RalBP1/Rip1/RLIP76). Biochem Biophys Res Commun. 2007;362:56–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Smith SC, Oxford G, Baras AS, Owens C, Havaleshko D, Brautigan DL, et al. Expression of Ral GTPases, their effectors and activators in human bladder cancer. Clin Cancer Res. 2007;13:3803–13.

    CAS  PubMed  Google Scholar 

  85. Wu Z, Owens C, Chandra N, Popovic K, Conaway M, Theodorescu D. RalBP1 is necessary for metastasis of human cancer cell lines. Neoplasia. 2010;12:1003–12.

    PubMed  Google Scholar 

  86. Martin TD, Samuel JC, Routh ED, Der CY, Yeh JJ. Activation and involvement of Ral GTPases in colorectal cancer. Cancer Res. 2011;71:206–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee S, Wurtzel J, Singhal SS, Awasthi S, Goldfinger LE. RALBP1/RLIP76 depletion in mice suppresses tumor growth by inhibiting tumor neo-vascularization. Cancer Res. 2012;72:5165–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mollberg NM, Steinert G, Aigner M, Hamm A, Lin FJ, Elbers H. Over-expression of RalBP1 in colorectal cancer is an independent predictor of poor survival and early tumor relapse. Cancer Biol Ther. 2012;1:694–700.

    Google Scholar 

  89. Wang Q, Wang JY, Zhang XP, Lv ZW, Fu D, Lu YC, et al. RLIP76 is overexpressed in human glioblastomas and is required for proliferation, tumorigenesis and suppression of apoptosis. Carcinogenesis. 2013;34:916–26.

    CAS  PubMed  Google Scholar 

  90. Wang Q, Qian J, Wang JY, Luo C, Chen J, Hu G, et al. Knockdown of RLIP76 expression by RNA interference inhibits invasion, induces cell cycle arrest, and increases chemosensitivity to the anticancer drug temozolomide in glioma cells. J Neuro-Oncol. 2013;112:73–82.

    CAS  Google Scholar 

  91. Rajasekar KV, Campbell LJ, Nietlispach D, Owen D, Mott HR. The structure of the RLIP76 RhoGAP-Ral binding domain dyad: fixed position of the domains leads to dual engagement of small G proteins at the membrane. Structure. 2013;21:2131–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mott HR, Owen D. Structure and function of RLIP76 (RalBP1): an intersection point between Ras and rho signalling. Biochem Soc Trans. 2014;42:52–8.

    CAS  PubMed  Google Scholar 

  93. Yao K, Xing H, Yang W, Liao A, Wu B, Li Y, et al. Knockdown of RLIP76 expression by RNA interference inhibits proliferation, enhances apoptosis, and increases chemo-sensitivity to daunorubicin in U937 leukemia cells. Tumor Biol. 2014;35:8023–31.

    CAS  Google Scholar 

  94. Wang CZ, Yuan P, Xu B, Yuan L, Yang HZ, Liu X. RLIP76 expression as a prognostic marker of breast cancer. Eur Rev Med Pharmacol Sci. 2015;19:2105–11.

    PubMed  Google Scholar 

  95. Zhang Y, Song X, Gong W, Zhu Z, Liu X, Hou Q, et al. RLIP76 blockade by siRNA inhibits proliferation, enhances apoptosis, and suppresses invasion in HT29 colon cancer cells. Cell Biochem Biophys. 2015;71:579–85.

    CAS  PubMed  Google Scholar 

  96. Lakoma A, Barbieri E, Agarwal S, Jackson J, Chen Z, Kim Y, et al. The MDM2 small-molecule inhibitor RG7388 leads to potent tumor inhibition in p53 wild-type neuroblastoma. Cell Death Dis. 2015;1:15026.

    CAS  Google Scholar 

  97. Berlanga P, Canete A, Castel V. Advances in emerging drugs for the treatment of neuroblastoma. Expert Opin Emerg Drugs. 2017;22:63075.

    Google Scholar 

  98. Jung M, Russell AJ, Liu B, George J, Liu PY, Liu T, et al. A Myc activity signature predicts poor clinical outcomes in Myc-associated cancers. Cancer Res. 2017;77:971–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported in part by the Department of Defense grant (W81XWH-16-1-0641) and funds from the Perricone Family Foundation, Los Angeles, CA. Funding from the Beckman Research Institute of the City of Hope is also acknowledged. We apologize to all colleagues whose work we could not cite due to space constraints. No conflict of interest exists for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad S. Singhal.

Electronic supplementary material

ESM 1

(XLSX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, S.S., Nagaprashantha, L., Singhal, P. et al. RLIP76 Inhibition: A Promising Developmental Therapy for Neuroblastoma. Pharm Res 34, 1673–1682 (2017). https://doi.org/10.1007/s11095-017-2154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2154-y

Key Words

Navigation