Skip to main content

Advertisement

Log in

Quantification of Four Efflux Drug Transporters in Liver and Kidney Across Species Using Targeted Quantitative Proteomics by Isotope Dilution NanoLC-MS/MS

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The expression levels of several efflux drug transporters in the liver and kidney were evaluated across species to address potential roles of the transporters in species dependent excretion of drugs and their metabolites.

Methods

Four efflux transporters, namely MDR1/P-gp, BCRP/Bcrp, MRP2/Mrp2 and MRP3/Mrp3 in liver and kidney in three preclinical species and humans were quantified using targeted quantitative proteomics by isotope dilution nanoLC-MS/MS.

Results

In liver, the level of P-gp was highest in monkey and lowest in rat. The concentration of BCRP/Bcrp was highest in dog followed by monkey. MRP2/Mrp2 level was highest in monkey and rat, whereas MRP3/Mrp3 levels were similar in human, monkey and dog. In the kidney, the concentrations of MDR1/P-gp in human and monkey were roughly 2 to 3-fold higher than in rat and dog. In rat, BCRP/Bcrp concentrations were substantially higher than in any of the other species. MRP2/Mrp2 concentrations were similar across species, whereas expression of MRP3/Mrp3 was highest in rat.

Conclusion

Overall, the results indicated that the pattern of hepatic and renal expression of the transporters was quite species dependent. This information should be helpful in the estimation of transport mediated drug and metabolites excretion in liver and kidney across species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BCRP/Bcrp:

Breast cancer resistant protein

LC:

Liquid chromatography

MDR1:

Multidrug resistance protein 1

MRM:

Multiple reaction monitoring

MRP/Mrp:

Multidrug resistance-associated protein

MS:

Mass spectrometry

P-gp:

P-glycoprotein 1

SIL:

Stable isotope label(ed)

REFERENCES

  1. Smith RL. The excretory function of bile: the elimination of drugs and toxic substances in bile. London: Chapman and Hall; 1973.

    Google Scholar 

  2. Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol. 1998;38:461–99.

    Article  CAS  PubMed  Google Scholar 

  3. Maher JM, Cheng X, Slitt AL, Dieter MZ, Klaassen CD. Induction of the multidrug resistance-associated protein family of transporters by chemical activators of receptor-mediated pathways in mouse liver. Drug Metab Dispos. 2005;33(7):956–62.

    Article  CAS  PubMed  Google Scholar 

  4. Maher JM, Cherrington NJ, Slitt AL, Klaassen CD. Tissue distribution and induction of the rat multidrug resistance-associated proteins 5 and 6. Life Sci. 2006;78(19):2219–25.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng X, Klaassen CD. Regulation of mRNA expression of xenobiotic transporters by the pregnane X receptor in mouse liver, kidney, and intestine. Drug Metab Dispos. 2006;34(11):1863–7.

    Article  CAS  PubMed  Google Scholar 

  6. Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, et al. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos. 2012;40(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  7. Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013;9(3):237–52.

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CE, et al. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos. 2015;43(3):367–74.

    Article  PubMed  Google Scholar 

  9. Uchida Y, Toyohara T, Ohtsuki S, Moriyama Y, Abe T, Terasaki T. Quantitative targeted absolute proteomics for 28 transporters in brush-border and basolateral membrane fractions of rat kidney. J Pharm Sci. 2015;105(2):1011–6.

    Article  Google Scholar 

  10. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Rev. 2003;55(1):3–29.

    Article  CAS  Google Scholar 

  11. van Herwaarden AE, Schinkel AH. The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci. 2006;27(1):10–6.

    Article  PubMed  Google Scholar 

  12. Borst P, Schinkel AH. P-glycoprotein ABCB1: a major player in drug handling by mammals. J Clin Invest. 2013;123(10):4131–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szakacs G, Varadi A, Ozvegy-Laczka C, Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADMETox). Drug Discov Today. 2008;13(9–10):379–93.

    Article  CAS  PubMed  Google Scholar 

  14. Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug. development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  CAS  PubMed  Google Scholar 

  15. Konig J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta. 1999;1461(2):377–94.

    Article  CAS  PubMed  Google Scholar 

  16. Kruh GD, Belinsky MG. The MRP family of drug transporters. Oncogene. 2003;22(47):7537–52.

    Article  CAS  PubMed  Google Scholar 

  17. Chan LM, Lowes S, Hirst BH. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci. 2004;21(1):25–51.

    Article  CAS  PubMed  Google Scholar 

  18. Büchler M, König J, Brom M, Kartenbeck J, Spring H, Horie T, et al. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMRP, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem. 1996;271(25):15091–8.

    Article  PubMed  Google Scholar 

  19. Hirohashi T, Ito K, Ogawa K, Suzuki H, Kume K, Shimizu T, et al. Hepatic expression of multidrug resistance-associated protein (MRP)-like proteins maintained in Eisai hyperbilirubinemic rats. Mol Pharmacol. 1998;53(6):1068–75.

    CAS  PubMed  Google Scholar 

  20. Ogawa K, Suzuki H, Hirohashi T, Ishikawa T, Meier PJ, Hirose K, et al. Characterization of inducible nature of MRP3 in rat liver. Am J Physiol Gastrointest Liver Physiol. 2000;278(3):G438–46.

    CAS  PubMed  Google Scholar 

  21. Kim M-S, Liu DQ, Strauss J, Capodanno I, Yao Z, Fenyk-Melody J, et al. Metabolism and disposition of gemfibrozil in wistar and multidrug resistance-associated protein 2-deficient TRrats. Xenobiotica. 2003;33(10):1027–42.

    Article  CAS  PubMed  Google Scholar 

  22. Renes J, de Vries EGE, Jansen PLM, Müller M. The (patho) physiological functions of the MRP family. Drug Resist Updat. 2000;3(5):289–302.

    Article  CAS  PubMed  Google Scholar 

  23. Fallon JK, Neubert H, Hyland R, Goosen TC, Smith PC. Targeted quantitative proteomics for the analysis of 14 UGT1As and -2Bs in human liver using nanoUPLC-MS/MS with selected reaction monitoring. J Proteome Res. 2013;12(10):4402–13.

    Article  CAS  PubMed  Google Scholar 

  24. Fallon JK, Neubert H, Goosen TC, Smith PC. Targeted precise quantification of 12 human recombinant uridine-diphosphate glucuronosyl transferase 1A and 2B isoforms using nano-ultra-high-performance liquid chromatography/tandem mass spectrometry with selected reaction monitoring. Drug Metab Dispos. 2013;41(12):2076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith PC, Fallon JK, Kubik N, Booth-Genthe CL. Measurement of membrane transporter proteins in human lung using quantitative targeted absolute proteomics (QTAP). US HUPO 9th Annual Conference, 2013;March 10–13:Poster 097.

  26. Higgins JW, Bao JQ, Ke AB, Manro JR, Fallon JK, Smith PC, et al. Utility of oatp1a/1b-knockout and OATP1B1/3-humanized mice in the study of OATP-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein. Drug Metab Dispos. 2014;42(1):182–92.

    Article  CAS  PubMed  Google Scholar 

  27. Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC, Miners JO. Scaling factors for the in vitro-in vivo extrapolation (IV-IVE) of renal drug and xenobiotic glucuronidation clearance. Br J Clin Pharmacol. 2016;81(6):1153–64.

    Article  CAS  PubMed  Google Scholar 

  28. Asher GN, Fallon JK, Smith PC. UGT concentrations in human rectal tissue after multidose, oral curcumin. Pharmacol Res Perspect. 2016;4(2), e00222.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kochansky CJ, Xia YQ, Wang S, Cato B, Creighton M, Vincent SH, et al. Species differences in the elimination of a peroxisome proliferator-activated receptor agonist highlighted by oxidative metabolism of its acyl glucuronide. Drug Metab Dispos. 2005;33(12):1894–904.

    CAS  PubMed  Google Scholar 

  30. Sallustio BC, Sabordo L, Evans AM, Nation RL. Hepatic disposition of electrophilic acyl glucuronide conjugates. Curr Drug Metab. 2000;1(2):163–80.

    Article  CAS  PubMed  Google Scholar 

  31. Nezasa K, Tian X, Zamek-Gliszczynsli MJ, Patel NJ, Raub TJ, Brower KL. Altered hepatobiliary disposition of 5 (and 6)-carboxy-2′,7′-dichlorofluorescein in Abcg2 (Bcrp1) and Abcc2 (Mrp 2) knockout mice. Drug Metab Dipos. 2006;34(4):718–23.

    Article  CAS  Google Scholar 

  32. Ishizuka H, Konno K, Shiina T, Naganuma H, Nishimura K, Ito K, et al. Species differences in the transport activity for organic anions across the bile canalicular membrane. Pharmacol Exp Ther. 1999;290(3):1324–30.

    CAS  Google Scholar 

  33. Ninomiya M, Ito K, Horie T. Functional analysis of dog multidrug resistance-associated protein 2 (Mrp2) in comparison with rat Mrp2. Drug Metab Dispos. 2005;33(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann C, van de Wetering K, van de Steeg E, Wagenaar E, Vens C, Schinkel AH. Species-dependent tansport and modulation properties of human and mouse multidrug resistance protein 2 (MRP2/Mrp2, ABCC2/Abcc2). Drug Metab Dispos. 2008;36(4):631–40.

    Article  CAS  PubMed  Google Scholar 

  35. Leazer TM, Klaassen CD. The presence of xenobiotic transporters in rat placenta. Drug Metab Dispos. 2003;31(2):153–67.

    Article  CAS  PubMed  Google Scholar 

  36. Prasad B, Evers R, Gupta A, Hop CE, Salphati L, Shukla S, et al. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos. 2014;42(1):78–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koenig E, Gray J, Xia CQ, Yang H, Kim M-S. Evaluation of species differences in the expression of drug transporters. 11th European Regional ISSX Meeting 2009 (Lisbon, Portugal, 17–20 May). ISSX Online Abstracts, Supplement 4, No. 2, 2009 (http://issx.confex.com/issx/11euro/webprogram/Paper14736.html).

  38. Li N, Zhang Y, Hua F, Lai Y. Absolute difference of hapatobiliary transpoeter multidrug resistance-associated protein (MRP2/Mrp2) in liver tissues and isolated hepatocytes from rat, dog, monkey and human. Drug Metab Dispos. 2009;37(1):66–73.

    Article  CAS  PubMed  Google Scholar 

  39. Peng K-W, Bacon Zheng M, Guo Y, Wang MZ. Ethnic variability in the expression of hepatic drug transporters: absolute quantification by an optimized targeted quantitative proteomic approach. Drug Metab Dispos. 2015;43(7):1045–55.

    Article  CAS  PubMed  Google Scholar 

  40. Morrissey KM, Stocker SL, Wittwer MB, Xu L, Giacomini KM. Renal transporters in drug development. Annu Rev Pharmacol Toxicol. 2013;53:503–29.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Aimy Tse and Bingli Ma for providing tissue samples for the study. The study was funded by Takeda Pharmaceuticals International Co. and supported in part by an NIH instrumentation grant, S10, RR024595.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Sook Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 36 kb)

Table SI

(DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallon, J.K., Smith, P.C., Xia, C.Q. et al. Quantification of Four Efflux Drug Transporters in Liver and Kidney Across Species Using Targeted Quantitative Proteomics by Isotope Dilution NanoLC-MS/MS. Pharm Res 33, 2280–2288 (2016). https://doi.org/10.1007/s11095-016-1966-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1966-5

KEY WORDS

Navigation