Skip to main content

Advertisement

Log in

Pharmacological Development of Target-Specific Delocalized Lipophilic Cation-Functionalized Carboranes for Cancer Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Tumor cell heterogeneity and microenvironment represent major hindering factors in the clinical setting toward achieving the desired selectivity and specificity to malignant tissues for molecularly targeted cancer therapeutics. In this study, the cellular and molecular evaluation of several delocalized lipophilic cation (DLC)-functionalized carborane compounds as innovative anticancer agents is presented.

Methods

The anticancer potential assessment of the DLC-carboranes was performed in established normal (MRC-5, Vero), cancer (U-87 MG, HSC-3) and primary glioblastoma cancer stem (EGFRpos, EGFRneg) cultures. Moreover, the molecular mechanism of action underlying their pharmacological response is also analyzed.

Results

The pharmacological anticancer profile of DLC-functionalized carboranes is characterized by: a) a marked in vitro selectivity, due to lower concentration range needed (ca. 10 fold) to exert their cell growth-arrest effect on U-87 MG and HSC-3, as compared with that on MRC-5 and Vero; b) a similar selective growth inhibition behavior towards EGFRpos and EGFRneg cultures (>10 fold difference in potency) without, however, the activation of apoptosis in cultures; c) notably, in marked contrast to cancer cells, normal cells are capable of recapitulating their full proliferation potential following exposure to DLC-carboranes; and, d) such pharmacological effects of DLC-carboranes has been unveiled to be elicited at the molecular level through activation of the p53/p21 axis.

Conclusions

Overall, the data presented in this work indicates the potential of the DLC-functionalized carboranes to act as new selective anticancer therapeutics that may be used autonomously or in therapies involving radiation with thermal neutrons. Importantly, such bifunctional capacity may be beneficial in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APL:

Acute promyelocytic leukemia

BNCT:

Boron neutron capture therapy

CSCs:

Cancer stem cells

CLL:

Chronic lymphocytic leukemia

DLCs:

Delocalized lipophilic cations

GBM:

Glioblastoma

HCC:

Hepatocellular carcinoma

ICC:

Immunocytochemistry

IC50 :

Inhibition concentration fifty

qPCR:

Real-time polymerase chain reaction

TPPs:

Triphenylphosphonium ions

References

  1. Atkins JH, Gershell LJ. Selective anticancer drugs. Nat Rev Drug Discov. 2002;1:491–2.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Borst P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2012;2:120066.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vizirianakis IS, Fatouros DG. Personalized nanomedicine: paving the way to the practical clinical utility of genomics and nanotechnology advancements. Adv Drug Deliv Rev. 2012;64:1359–62.

    Article  CAS  PubMed  Google Scholar 

  5. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

    Article  CAS  PubMed  Google Scholar 

  6. Ismail F, Winkler DA. Getting to the source: selective drug targeting of cancer stem cells. Chem Med Chem. 2014;9:885–98.

    Article  CAS  PubMed  Google Scholar 

  7. Würth R, Barbieri F, Florio T. New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells. Biomed Res Int. 2014;2014:126586.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gottesman MM, Lavi O, Hall MD, Gillet JP. Towards a better understanding of the complexity of cancer drug resistance. Annu Rev Pharmacol Toxicol. 2015. doi:10.1146/annurev-pharmtox-010715-103111.

    PubMed  Google Scholar 

  9. Tong R, Kohane DS. New strategies in cancer nanomedicine. Annu Rev Pharmacol Toxicol. 2015. doi:10.1146/annurev-pharmtox-010715-103456.

    PubMed  Google Scholar 

  10. Vizirianakis, IS, Mystridis GA, Avgoustakis K, Fatouros DG, Spanakis M. Enabling personalized cancer medicine decisions: the challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics. Oncol Rep. 2016;35:1891–904.

  11. Madak JT, Neamati N. Membrane permeable lipophilic cations as mitochondrial directing groups. Curr Top Med Chem. 2015;15:745–66.

    Article  CAS  PubMed  Google Scholar 

  12. Modica-Napolitano JS, Aprille JR. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res. 1987;47:4361–5.

    CAS  PubMed  Google Scholar 

  13. Modica-Napolitano JS, Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev. 2001;49:63–70.

    Article  CAS  PubMed  Google Scholar 

  14. Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9:447–64.

    Article  CAS  PubMed  Google Scholar 

  15. Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med Chem. 2013;5:53–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Modica-Napolitano JS, Weissig V. Treatment strategies that enhance the efficacy and selectivity of mitochondria-targeted anticancer agents. Int J Mol Sci. 2015;16:17394–421.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pathania D, Millard M, Neamati N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev. 2009;61:1250–75.

    Article  CAS  PubMed  Google Scholar 

  18. Kurtoglu M, Lampidis TJ. From delocalized lipophilic cations to hypoxia: blocking tumor cell mitochondrial function leads to therapeutic gain with glycolytic inhibitors. Mol Nutr Food Res. 2009;53:68–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barth RF, Coderre JA, Vicente MG, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res. 2005;11:3987–4002.

    Article  CAS  PubMed  Google Scholar 

  20. Calabrese G, Gomes ACNM, Barbu E, Nevell TG, Tsibouklis J. Carborane-based derivatives of delocalised lipophilic cations for boron neutron capture therapy: synthesis and preliminary in vitro evaluation. J Mater Chem. 2008;18:4864–71.

    Article  CAS  Google Scholar 

  21. Vizirianakis IS, Tsiftsoglou AS. Blockade of murine erythroleukemia cell differentiation by hypomethylating agents causes accumulation of discrete small poly(A)- RNAs hybridized to 3′-end flanking sequences of beta(major) globin gene. Biochim Biophys Acta. 2005;1743:101–14.

    Article  CAS  PubMed  Google Scholar 

  22. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;4:7011–21.

    Article  Google Scholar 

  23. Galli R. The neurosphere assay applied to neural stem cells and cancer stem cells. Methods Mol Biol. 2013;986:267–77.

    Article  CAS  PubMed  Google Scholar 

  24. Theodoropoulos D, Rova A, Smith JR, Barbu E, Calabrese G, Vizirianakis IS, et al. Towards boron neutron capture therapy: the formulation and preliminary in vitro evaluation of liposomal vehicles for the therapeutic delivery of the dequalinium salt of bis-nido-carborane. Bioorg Med Chem Lett. 2013;23:6161–6.

    Article  CAS  PubMed  Google Scholar 

  25. Engels CC, Ruberta F, de Kruijf EM, van Pelt GW, Smit VT, Liefers GJ, et al. The prognostic value of apoptotic and proliferative markers in breast cancer. Breast Cancer Res Treat. 2013;142:323–39.

    Article  CAS  PubMed  Google Scholar 

  26. Bullwinkel J, Baron-Lühr B, Lüdemann A, Wohlenberg C, Gerdes J, Scholzen T. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol. 2006;206:624–35.

    Article  CAS  PubMed  Google Scholar 

  27. Irving J, Feng J, Wistrom C, Ikaart M, Villeponteau B. An altered repertoire of fos/jun (AP-1) of replicative senescent. Exp Cell Res. 1992;202:161–6.

    Article  CAS  PubMed  Google Scholar 

  28. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A. 1996;93:13742–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen J-H, Tseng T-H, Ho Y-C, Lin H-H, Lin W-L, Wang C-J. Gaseous nitrogen oxides stimulate cell cycle progression by rubidium phosphorylation via activation of cyclins/cdks. Toxicol Sci. 2003;76:83–90.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang K, Lu J, Mori T, Smith-Powell L, Synold TW, Chen S, et al. Baicalin increases VEGF expression and angiogenesis by activating the ERRa/PGC-1a pathway. Cardiovascular Res. 2011;89:426–35.

    Article  CAS  Google Scholar 

  31. Binet R, Ythier D, Robles AI, Collado M, Larrieu D, Fonti C, et al. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 2009;69:9183–91.

    Article  CAS  PubMed  Google Scholar 

  32. Ribeiro B, Ferreira L, Gonçalves C, Neves S, Araújo M, Carvalho F, et al. Delocalized lipophilic cations as a new therapeutic approach in cancer. BMC Proc. 2010;4 Suppl 2:30.

    Article  Google Scholar 

  33. García-Pérez AI, Galeano E, Nieto E, Estañ MC, Sancho P. Dequalinium induces cytotoxicity in human leukemia NB4 cells by downregulation of Raf/MEK/ERK and PI3K/Akt signaling pathways and potentiation of specific inhibitors of these pathways. Leuk Res. 2014;38:795–803.

    Article  PubMed  Google Scholar 

  34. Agarwal ML, Agarwal A, Taylor WR, Stark GR. P53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A. 1995;92:8493–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995;55:5187–90.

    CAS  PubMed  Google Scholar 

  36. Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, et al. p53-Dependent and independent expression of p21 during cell growth, differentiation and DNA damage. Genes Dev. 1995;9:935–44.

    Article  CAS  PubMed  Google Scholar 

  37. Israels ED, Israels LG. The cell cycle. Oncologist. 2000;5:510–3.

    Article  CAS  PubMed  Google Scholar 

  38. He G, Siddik ZH, Huang Z, Wang R, Koomen J, Kobayashi R, et al. Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene. 2005;24:2929–43.

    Article  CAS  PubMed  Google Scholar 

  39. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis: the p53 network. J Cell Sci. 2003;116:4077–85.

    Article  CAS  PubMed  Google Scholar 

  40. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gartel AL, Shchors K. Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp Cell Res. 2003;283:7–21.

    Article  Google Scholar 

  42. Slee EA, O’Connor DJ, Lu X. To die or not to die: how does p53 decide? Oncogene. 2004;23:2809–18.

    Article  CAS  PubMed  Google Scholar 

  43. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003;22:9030–40.

    Article  CAS  PubMed  Google Scholar 

  44. Parikh N, Hilsenbeck S, Creighton CJ, Dayaram T, Shuck R, Shinbrot E, et al. Effects of TP53 mutational status on gene expression patterns across 10 human cancer types. J Pathol. 2014;232:522–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marcel V, Catez F, Diaz J-J. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene. 2015;34:5513–23.

    Article  CAS  PubMed  Google Scholar 

  46. Sochalska M, Tuzlak S, Egle A, Villunger A. Lessons from gain- and loss-of-function models of pro-survival Bcl2 family proteins: implications for targeted therapy. FEBS J. 2015;282:834–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Delbridge AR, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015;22:1071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was partially funded by interdepartmental public funds of Aristotle University Research Committee to ISV. EDT is recipient of a STSM fellowship from the COST 1106 action to work at Rosella Galli’s lab (San Raffaele Scientific Institute, Milan). We would like to thank Dr. Rosella Galli, (Group Leader at Neural Stem Cell Biology Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan), for her kind offer of EGFRneg and EGFRpos primary GBM CSCs and also for allowing us to perform that experiments in her laboratory. Also, we thank Dr. Narayanan Ashwin (Postdoctoral fellow at Rosella Galli’s lab) for his help in the EGFRneg and EGFRpos handling and the immunofluorescence microscopy.

The authors disclose no conflict of interest. This work was partially funded by interdepartmental public funds of Aristotle University Research Committee to ISV and STSM fellowship from the CMST COST Action CM1106 to EDT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis S. Vizirianakis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseligka, E.D., Rova, A., Amanatiadou, E.P. et al. Pharmacological Development of Target-Specific Delocalized Lipophilic Cation-Functionalized Carboranes for Cancer Therapy. Pharm Res 33, 1945–1958 (2016). https://doi.org/10.1007/s11095-016-1930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1930-4

KEY WORDS

Navigation