Skip to main content
Log in

Comparative Evaluation of Two Methods for Preparative Fractionation of Proteinaceous Subvisible Particles—Differential Centrifugation and FACS

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The goal of this study was to compare and evaluate two preparative techniques for fractionation of proteinaceous subvisible particles. This work enables future studies to address the potential biological consequences of proteinaceous subvisible particles in protein therapeutic products.

Methods

Particles were generated by heat stress and separated by size using differential centrifugation and FACS (Fluorescence-activated cell sorter). Resulting fractions were characterized by size-exclusion chromatography, light obscuration, flow imaging microscopy and resonant mass measurement.

Results

Here we report the optimization and comprehensive evaluation of two methods for preparative fractionation of subvisible proteinaceous particles into distinct size fractions in the range between 0.25 and 100 μm: differential centrifugation and FACS. Using these methods, well-defined size fractions were prepared and characterized in detail. Critical assessment and comparison of the two techniques demonstrated their complementarity and for the first time—their relative advantages and drawbacks.

Conclusions

FACS and differential centrifugation are valuable tools to prepare well-defined size-fractions of subvisible proteinaceous particles. Both techniques possess unique and advantageous attributes and will likely find complementary application in future research on the biological consequences of proteinaceous subvisible particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AF4:

Asymmetric flow field-flow fractionation

CCF:

Central composite face-centered

DoE:

Design of experiments

FACS:

Fluorescence-activated cell sorter

FI:

Flow imaging microscopy

FSC:

Forward scattering

IgG:

Immunoglobulin G

LO:

Light obscuration

MAb1:

Monoclonal antibody

PBS:

Phosphate buffered saline

RMM:

Resonant mass measurement

RSM:

Response surface methodology

UV:

Ultraviolet light

References

  1. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8:E501–507.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99:3302–21.

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98:1201–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28:920–33.

    Article  Google Scholar 

  5. Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011;100:354–87.

    Article  CAS  PubMed  Google Scholar 

  6. Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem. 2012;287:25266–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. van Beers MM, Sauerborn M, Gilli F, Brinks V, Schellekens H, Jiskoot W. Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice. Pharm Res. 2011;28:2393–402.

    Article  PubMed Central  PubMed  Google Scholar 

  8. van Beers MM, Gilli F, Schellekens H, Randolph TW, Jiskoot W. Immunogenicity of recombinant human interferon beta interacting with particles of glass, metal, and polystyrene. J Pharm Sci. 2012;101:187–99.

    Article  PubMed  Google Scholar 

  9. van Beers MM, Jiskoot W, Schellekens H. On the role of aggregates in the immunogenicity of recombinant human interferon beta in patients with multiple sclerosis. J Interferon Cytokine Res. 2010;30:767–75.

    Article  PubMed  Google Scholar 

  10. Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98:2909–34.

    Article  CAS  PubMed  Google Scholar 

  11. Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286:25118–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Mahler HC, Müller R, Friess W, Delille A, Matheus S. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm. 2005;59:407–17.

    Article  CAS  PubMed  Google Scholar 

  13. Kiese S, Pappenberger A, Friess W, Mahler HC. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97:4347–66.

    Article  CAS  PubMed  Google Scholar 

  14. Kiese S, Pappenberger A, Friess W, Mahler HC. Equilibrium studies of protein aggregates and homogeneous nucleation in protein formulation. J Pharm Sci. 2010;99:632–44.

    CAS  PubMed  Google Scholar 

  15. Kükrer B, Filipe V, van Duijn E, Kasper PT, Vreeken RJ, Heck AJ, et al. Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography. Pharm Res. 2010;27:2197–204.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Paul R, Graff-Meyer A, Stahlberg H, Lauer ME, Rufer AC, Beck H, et al. Structure and function of purified monoclonal antibody dimers induced by different stress conditions. Pharm Res. 2012;29:2047–59.

    Article  CAS  PubMed  Google Scholar 

  17. Hawe A, Romeijn S, Filipe V, Jiskoot W. Asymmetrical flow field-flow fractionation method for the analysis of submicron protein aggregates. J Pharm Sci. 2012;101:4129–39.

    Article  CAS  PubMed  Google Scholar 

  18. Johnand C, Langer K. Asymmetrical flow field-flow fractionation for human serum albumin based nanoparticle characterisation and a deeper insight into particle formation processes. J Chromatogr A. 2014;1346:97–106.

    Article  Google Scholar 

  19. Freitag AJ, Shomali M, Michalakis S, Biel M, Siedler M, Kaymakcalan Z, et al. Investigation of the Immunogenicity of Different Types of Aggregates of a Murine Monoclonal Antibody in Mice. Pharm Res. 2015;32(2):430–44.

    Article  PubMed  Google Scholar 

  20. Rombach-Riegraf V, Allard C, Angevaare E, Matter A, Ossuli B, Strehl R, et al. Size fractionation of microscopic protein aggregates using a preparative fluorescence-activated cell sorter. J Pharm Sci. 2013;102:2128–35.

    Article  CAS  PubMed  Google Scholar 

  21. Lee YH, Tan HT, Chung MC. Subcellular fractionation methods and strategies for proteomics. Proteomics. 2010;10:3935–56.

    Article  CAS  PubMed  Google Scholar 

  22. Cahnand FH, Fox MS. Fractionation of transformable bacteria from competent cultures of Bacillus subtilis on renografin gradients. J Bacteriol. 1968;95:867–75.

    Google Scholar 

  23. Moni C, Derrien D, Hatton PJ, Zeller B, Kleber M. Density fractions versus size separates: does physical fractionation isolate functional soil compartments? Biogeosciences. 2012;9:5181–97.

    Article  CAS  Google Scholar 

  24. Novak JP, Nickerson C, Franzen S, Feldheim DL. Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem. 2001;73:5758–61.

    Article  CAS  PubMed  Google Scholar 

  25. Sun X, Tabakman SM, Seo WS, Zhang L, Zhang G, Sherlock S, et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew Chem Int Ed Engl. 2009;48:939–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nobleand PB, Cutts JH. Separation of blood leukocytes by Ficoll gradient. Can Vet J. 1967;8:110–1.

    Google Scholar 

  27. Lu Y, Ahmed S, Harari F, Vahter M. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J Trace Elem Med Biol. 2015;29:249–54.

    Article  CAS  PubMed  Google Scholar 

  28. Jaatinen, T. and Laine J. Isolation of mononuclear cells from human cord blood by Ficoll-Paque density gradient. Curr Protoc Stem Cell Biol. Chapter 2:Unit 2A 1 (2007).

  29. Lueders T, Manefield M, Friedrich MW. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol. 2004;6:73–8.

    Article  CAS  PubMed  Google Scholar 

  30. Sohi SP, Mahieu N, Arah JRM, Powlson DS, Madari B, Gaunt JL. A procedure for isolating soil organic matter fractions suitable for modelling. Soil Sci Soc Am J. 2001;65:1121.

    Article  CAS  Google Scholar 

  31. Telikepalli S, Shinogle HE, Thapa PS, Kim JH, Deshpande M, Jawa V, et al. Physical Characterization and In Vitro Biological Impact of Highly Aggregated Antibodies Separated into Size-Enriched Populations by Fluorescence-Activated Cell Sorting. J Pharm Sci. 2015;104:1575–91.

    Article  CAS  PubMed  Google Scholar 

  32. Werk T, Volkin DB, Mahler HC. Effect of solution properties on the counting and sizing of subvisible particle standards as measured by light obscuration and digital imaging methods. Eur J Pharm Sci. 2014;53:95–108.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, H., Diez, M., Koulov, A., Bozova, M., Bluemel, M., Forrer, K. Characterization of aggregates and particles using emerging techniques. analysis of aggregates and particles in protein pharmaceuticals. Wiley, 2012, 133–167.

  34. Nolte-‘t Hoen EN, van der Vlist EJ, Aalberts M, Mertens HC, Bosch BJ, Bartelink W, et al. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine. 2012;8:712–20.

    Article  PubMed  Google Scholar 

  35. Nishi H, Mathäs R, Fürst R, Winter G. Label-free flow cytometry analysis of subvisible aggregates in liquid IgG1 antibody formulations. J Pharm Sci. 2014;103:90–9.

    Article  CAS  PubMed  Google Scholar 

  36. Barnard JG, Singh S, Randolph TW, Carpenter JF. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway. J Pharm Sci. 2011;100:492–503.

    Article  CAS  PubMed  Google Scholar 

  37. Weinbuch D, Zölls S, Wiggenhorn M, Friess W, Winter G, Jiskoot W, et al. Micro-flow imaging and resonant mass measurement (archimedes) - complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J Pharm Sci. 2013;102:2152–65.

    Article  CAS  PubMed  Google Scholar 

  38. Seefeldt MB, Rosendahl MS, Cleland JL, Hesterberg LK. Application of high hydrostatic pressure to dissociate aggregates and refold proteins. Curr Pharm Biotechnol. 2009;10:447–55.

    Article  CAS  PubMed  Google Scholar 

  39. Chirinoand AJ, Mire-Sluis A. Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol. 2004;22:1383–91.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Tarik Khan for editorial help, Gabriela Quebatte and Adeline Boillon for helpful discussions and Marc Bedoucha for providing access to instrumentation and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas V. Koulov.

Additional information

Björn Boll and Emilien Folzer contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boll, B., Folzer, E., Finkler, C. et al. Comparative Evaluation of Two Methods for Preparative Fractionation of Proteinaceous Subvisible Particles—Differential Centrifugation and FACS. Pharm Res 32, 3952–3964 (2015). https://doi.org/10.1007/s11095-015-1755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1755-6

KEY WORDS

Navigation